Existence of Solutions for the Critical Elliptic System with Inverse Square Potentials

被引:1
|
作者
Liu, Zhao-xia [1 ]
Liu, Zhao-hui [2 ]
机构
[1] Minzu Univ China, Sch Sci, Dept Informat & Computat Sci, Beijing 100081, Peoples R China
[2] Suncun Middle Sch, Gaoxin Dist Of Jinan 250104, Shandong, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
elliptic system; variational functional; Palais-Smale condition; critical point; CRITICAL SOBOLEV EXPONENTS; POSITIVE SOLUTIONS; CRITICAL GROWTH; HARDY EXPONENTS; MULTIPLE SOLUTIONS; EQUATIONS; INEQUALITIES;
D O I
10.1007/s10255-013-0225-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Omega there exists 0 be an open bounded domain in R-N (N >= 3) and 2*(s) = 2(N-s)/N-2, 0 < s < 2. We consider the following elliptic system of two equations in H-0(1)(Omega) x H-0(1)(Omega): -Delta u-tu/vertical bar x vertical bar(2) = 2 alpha/alpha+beta vertical bar u vertical bar(alpha-2)u vertical bar v vertical bar(beta)/vertical bar x vertical bar(3) + lambda v, -Delta u-tv/vertical bar x vertical bar(2) = 2 beta/alpha+beta vertical bar u vertical bar(alpha)vertical bar v vertical bar(beta-2)v/vertical bar x vertical bar(3) + mu v, where lambda, mu > 0 and alpha, beta > 1 satisfy alpha + beta = 2*( s). Using the Moser iteration, we prove the asymptotic behavior of solutions at the origin. In addition, by exploiting the Mountain- Pass theorem, we establish the existence of solutions.
引用
收藏
页码:315 / 328
页数:14
相关论文
共 50 条
  • [1] Existence of Solutions for the Critical Elliptic System with Inverse Square Potentials
    Zhao-xia LIU
    Zhao-hui LIU
    Acta Mathematicae Applicatae Sinica, 2013, (02) : 315 - 328
  • [2] Existence of solutions for the critical elliptic system with inverse square potentials
    Zhao-xia Liu
    Zhao-hui Liu
    Acta Mathematicae Applicatae Sinica, English Series, 2013, 29 : 315 - 328
  • [3] Existence of Solutions for the Critical Elliptic System with Inverse Square Potentials
    Zhaoxia LIU
    Zhaohui LIU
    Acta Mathematicae Applicatae Sinica(English Series), 2013, 29 (02) : 315 - 328
  • [4] Solutions to critical elliptic equations with multi-singular inverse square potentials
    Cao, DM
    Han, PG
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 224 (02) : 332 - 372
  • [5] GROUND STATE SOLUTIONS FOR HAMILTONIAN ELLIPTIC SYSTEM WITH INVERSE WITH INVERSE SQUARE POTENTIAL
    Zhang, Jian
    Zhang, Wen
    Tang, Xianhua
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2017, 37 (08) : 4565 - 4583
  • [6] Existence of solutions for perturbed elliptic system with critical exponents
    Jiang, Juan
    Liu, Wenbin
    BOUNDARY VALUE PROBLEMS, 2015,
  • [7] Existence of Positive Solutions for a Critical Nonlocal Elliptic System
    Costa, A. C. R.
    Figueiredo, G. M.
    Miyagaki, O. H.
    JOURNAL OF CONVEX ANALYSIS, 2022, 29 (04) : 1117 - 1117
  • [8] Existence of solutions for perturbed elliptic system with critical exponents
    Juan Jiang
    Wenbin Liu
    Boundary Value Problems, 2015
  • [9] EXISTENCE OF GROUND STATE SOLUTIONS TO HAMILTONIAN ELLIPTIC SYSTEM WITH POTENTIALS
    王文波
    李全清
    Acta Mathematica Scientia, 2018, 38 (06) : 1966 - 1980
  • [10] EXISTENCE OF GROUND STATE SOLUTIONS TO HAMILTONIAN ELLIPTIC SYSTEM WITH POTENTIALS
    Wang, Wenbo
    Li, Quanqing
    ACTA MATHEMATICA SCIENTIA, 2018, 38 (06) : 1966 - 1980