TENSOR MODELING BASED FOR AIRBORNE LiDAR DATA CLASSIFICATION

被引:2
|
作者
Li, N. [1 ,2 ]
Liu, C. [1 ]
Pfeifer, N. [2 ]
Yin, J. F. [3 ]
Liao, Z. Y. [3 ]
Zhou, Y. [1 ]
机构
[1] Tongji Univ, Coll Survey & Geoinformat, Shanghai 200092, Peoples R China
[2] Tech Univ Wien, Dept Geodesy & Geoinformat, A-1040 Vienna, Austria
[3] Tongji Univ, Dept Math, Shanghai 200092, Peoples R China
来源
XXIII ISPRS CONGRESS, COMMISSION III | 2016年 / 41卷 / B3期
基金
中国国家自然科学基金;
关键词
Feature Selection; Tensor Processing; KNN classification; FEATURES;
D O I
10.5194/isprsarchives-XLI-B3-283-2016
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Feature selection and description is a key factor in classification of Earth observation data. In this paper a classification method based on tensor decomposition is proposed. First, multiple features are extracted from raw LiDAR point cloud, and raster LiDAR images are derived by accumulating features or the "raw" data attributes. Then, the feature rasters of LiDAR data are stored as a tensor, and tensor decomposition is used to select component features. This tensor representation could keep the initial spatial structure and insure the consideration of the neighborhood. Based on a small number of component features a k nearest neighborhood classification is applied.
引用
收藏
页码:283 / 287
页数:5
相关论文
共 50 条
  • [21] Fisher Vector Encoding of Supervoxel-Based Features for Airborne LiDAR Data Classification
    Akwensi, Perpetual Hope
    Kang, Zhizhong
    Yang, Juntao
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (03) : 504 - 508
  • [22] MULTIVARIATE GAUSSIAN DECOMPOSITION FOR MULTISPECTRAL AIRBORNE LIDAR DATA CLASSIFICATION
    Morsy, Salem
    Shaker, Ahmed
    El-Rabbany, Ahmed
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 8741 - 8744
  • [23] Multiple Kernel Sparse Representation for Airborne LiDAR Data Classification
    Gu, Yanfeng
    Wang, Qingwang
    Xie, Bingqian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (02): : 1085 - 1105
  • [24] A multiresolution hierarchical classification algorithm for filtering airborne LiDAR data
    Chen, Chuanfa
    Li, Yanyan
    Li, Wei
    Dai, Honglei
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2013, 82 : 1 - 9
  • [25] CLASSIFICATION OF WATER SURFACES USING AIRBORNE TOPOGRAPHIC LIDAR DATA
    Smeeckaert, Julien
    Mallet, Clement
    David, Nicolas
    ISPRS HANNOVER WORKSHOP 2013, 2013, 40-1 (W-1): : 321 - 326
  • [26] Classification of compressed full-waveform airborne lidar data
    Macaulay, Sadiq Olayiwola
    Maset, Eleonora
    Fusiello, Andrea
    REMOTE SENSING LETTERS, 2024, 15 (07) : 729 - 738
  • [27] Sea Floor Classification with Satellite Data and Airborne Lidar Bathymetry
    Tulldahl, H. Michael
    Philipson, Petra
    Kautsky, Hans
    Wikstrom, Sofia A.
    OCEAN SENSING AND MONITORING V, 2013, 8724
  • [28] ASSESSMENT OF AIRBORNE LIDAR DATA FOR INSTREAM FLOW TYPE CLASSIFICATION
    Lin, Yu-Li
    Wang, Chi-Kuei
    2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 930 - 933
  • [29] Forest Delineation Based on Airborne LIDAR Data
    Eysn, Lothar
    Hollaus, Markus
    Schadauer, Klemens
    Pfeifer, Norbert
    REMOTE SENSING, 2012, 4 (03) : 762 - 783
  • [30] GEOMETRY BASED AIRBORNE LIDAR DATA COMPRESSION
    Li, Xiaoling
    Zeng, Wenjun
    Duan, Ye
    2013 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME 2013), 2013,