Estimating doubly stochastic Poisson process with affine intensities by Kalman filter

被引:1
|
作者
De Genaro, Alan [1 ,2 ]
Simonis, Adilson [3 ]
机构
[1] Univ Sao Paulo, Dept Econ, Sao Paulo, Brazil
[2] BM&FBOVESPA, Secur Commod & Futures Exchange, Sao Paulo, Brazil
[3] Univ Sao Paulo, Inst Math & Stat, Sao Paulo, Brazil
关键词
Doubly stochastic Poisson process; Affine diffusion; Kalman filter; Order book; TERM STRUCTURE; COX PROCESS; MODEL; TESTS;
D O I
10.1007/s00362-014-0606-6
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper proposes a Kalman filter formulation for parameter estimation of doubly stochastic Poisson processes (DSPP) with stochastic affine intensities. To achieve this aim, an analytical expression for the probability distribution functions of the corresponding DSPP for any intensity from the class of affine diffusions is obtained. More detailed results are provided for one- and two-factor Feller and Ornstein-Uhlenbeck diffusions. A Monte Carlo study indicates that the proposed method is a reliable procedure for moderate sample sizes. An empirical analysis of one- and two-factor Feller and Ornstein-Uhlenbeck models is carried out using high frequency transaction data.
引用
收藏
页码:723 / 748
页数:26
相关论文
共 50 条
  • [21] DOUBLY STOCHASTIC POISSON POINT PROCESS DRIVEN BY FRACTAL SHOT NOISE
    LOWEN, SB
    TEICH, MC
    PHYSICAL REVIEW A, 1991, 43 (08): : 4192 - 4215
  • [22] Application of Kalman Filter for Estimating a Process Disturbance in a Building Space
    Kim, Deuk-Woo
    Park, Cheol-Soo
    SUSTAINABILITY, 2017, 9 (10)
  • [23] On the characteristic functional of a doubly stochastic Poisson process: Application to a narrow-band process
    Bouzas, P. R.
    Valderrama, M. J.
    Aguilera, A. M.
    APPLIED MATHEMATICAL MODELLING, 2006, 30 (09) : 1021 - 1032
  • [24] ON THE INCREMENTS OF THE DOUBLY STOCHASTIC POISSON PROCESSES
    ALVAREZANDRADE, S
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1992, 315 (05): : 609 - 614
  • [25] SMOOTHING FOR DOUBLY STOCHASTIC POISSON PROCESSES
    SNYDER, DL
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1972, 18 (05) : 558 - +
  • [26] Poisson Kalman filter for disease surveillance
    Ebeigbe, Donald
    Berry, Tyrus
    Schiff, Steven J.
    Sauer, Timothy
    PHYSICAL REVIEW RESEARCH, 2020, 2 (04):
  • [27] PERFORMANCE OF THE KALMAN FILTER WITH POISSON MEASUREMENTS
    FARIDANI, HM
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1985, 16 (02) : 249 - 256
  • [28] Functional principal component modelling of the-intensity of a doubly stochastic Poisson process
    Aguilera, AM
    Bouzas, PR
    Ruiz-Fuentes, N
    COMPSTAT 2002: PROCEEDINGS IN COMPUTATIONAL STATISTICS, 2002, : 373 - 376
  • [29] Doubly stochastic Poisson process models for precipitation at fine time-scales
    Ramesh, Nadarajah I.
    Onof, Christian
    Xie, Dichao
    ADVANCES IN WATER RESOURCES, 2012, 45 : 58 - 64
  • [30] NONPARAMETRIC INFERENCE OF DOUBLY STOCHASTIC POISSON PROCESS DATA VIA THE KERNEL METHOD
    Zhang, Tingting
    Kou, S. C.
    ANNALS OF APPLIED STATISTICS, 2010, 4 (04): : 1913 - 1941