Shift-Invariant Grouped Multi-task Learning for Gaussian Processes

被引:0
|
作者
Wang, Yuyang [1 ]
Khardon, Roni [1 ]
Protopapas, Pavlos [2 ]
机构
[1] Tufts Univ, Medford, MA 02155 USA
[2] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA
来源
MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PT III | 2010年 / 6323卷
关键词
GRAVITATIONAL LENSING EXPERIMENT; MACHO PROJECT; STARS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-task learning leverages shared information among data sets to improve the learning performance of individual tasks. The paper applies this framework for data where each task is a phase-shifted periodic time series. In particular, we develop a novel Bayesian nonparametric model capturing a mixture of Gaussian processes where each task is a sum of a group-specific function and a component capturing individual variation, in addition to each task being phase shifted. We develop an efficient em algorithm to learn the parameters of the model. As a special case we obtain the Gaussian mixture model and em algorithm for phased-shifted periodic time series. Experiments in regression, classification and class discovery demonstrate the performance of the proposed model using both synthetic data and real-world time series data from astrophysics. Our methods are particularly useful when the time series are sparsely and non-synchronously sampled.
引用
收藏
页码:418 / 434
页数:17
相关论文
共 50 条
  • [21] Shift-invariant waveform learning on epileptic ECoG
    Mendoza-Cardenas, Carlos H.
    Brockmeier, Austin J.
    2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 1136 - 1139
  • [22] A hybrid learning network for shift-invariant recognition
    Wang, RY
    NEURAL NETWORKS, 2001, 14 (08) : 1061 - 1073
  • [23] Learning Shift-Invariant Sparse Representation of Actions
    Li, Yi
    Fermuller, Cornelia
    Aloimonos, Yiannis
    Ji, Hui
    2010 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2010, : 2630 - 2637
  • [24] Phase-Retrieval in Shift-Invariant Spaces with Gaussian Generator
    Groechenig, Karlheinz
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2020, 26 (03)
  • [25] Variance of the number of zeroes of shift-invariant Gaussian analytic functions
    Feldheim, Naomi Dvora
    ISRAEL JOURNAL OF MATHEMATICS, 2018, 227 (02) : 753 - 792
  • [26] Phase-Retrieval in Shift-Invariant Spaces with Gaussian Generator
    Karlheinz Gröchenig
    Journal of Fourier Analysis and Applications, 2020, 26
  • [27] Sampling in the shift-invariant space generated by the bivariate Gaussian function
    Romero, Jose Luis
    Ulanovskii, Alexander
    Zlotnikov, Ilya
    JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 287 (09)
  • [28] Variance of the number of zeroes of shift-invariant Gaussian analytic functions
    Naomi Dvora Feldheim
    Israel Journal of Mathematics, 2018, 227 : 753 - 792
  • [29] Multi-task Sparse Structure Learning with Gaussian Copula Models
    Goncalves, Andre R.
    Von Zuben, Fernando J.
    Banerjee, Arindam
    JOURNAL OF MACHINE LEARNING RESEARCH, 2016, 17 : 1 - 30
  • [30] Multi-task gradient descent for multi-task learning
    Lu Bai
    Yew-Soon Ong
    Tiantian He
    Abhishek Gupta
    Memetic Computing, 2020, 12 : 355 - 369