Speciation of adsorbed yttrium and rare earth elements on oxide surfaces

被引:54
|
作者
Piasecki, Wojciech [1 ]
Sverjensky, Dimitri A. [1 ]
机构
[1] Johns Hopkins Univ, Dept Earth & Planetary Sci, Baltimore, MD 21218 USA
关键词
D O I
10.1016/j.gca.2008.05.049
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The distribution of yttrium and the rare earth elements (YREE) between natural waters and oxide mineral surfaces depends on adsorption reactions, which in turn depend on the specific way in which YREE are coordinated to mineral surfaces. Recent X-ray studies have established that Y3+ is adsorbed to the rutile (110) surface as a distinctive tetranuclear species. However, the hydrolysis state of the adsorbed cation is not known from experiment. Previous surface complexation models of YREE adsorption have suggested two to four cation hydrolysis states coexisting on oxide surfaces. In the present study, we investigate the applicability of the X-ray results to rare earth elements and to several oxides in addition to rutile using the extended triple-layer surface complexation model. The reaction producing a hydrolyzed tetranuclear surface species 4> SOH + M3+ + 2H(2)O = (> SOH)(2)(> SO-)(2-)M(OH)(2)(+) + 4H(+) was found to account for a significant fraction of the adsorbed Y3+, La3+, Nd3+, Gd3+, and Yb3+ on rutile, hematite, alumina and silica over wide ranges of pH and ionic strength. Where adsorption data were available as a function of surface coverage for hematite and silica, an additional reaction involving a mononuclear species could be used to account for the higher surface coverages. However, it is also possible that some of the higher surface coverage data refer to surface precipitation rather than adsorption. The results of the present study provide an internally consistent basis for describing YREE adsorption which could be used to investigate more complex systems in which YREE compete both in aqueous solution and on mineral surfaces with alkaline earths and ligands such as carbonate, sulfate, chloride and organic species, in order to build a predictive adsorption model applicable to natural waters. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3964 / 3979
页数:16
相关论文
共 50 条
  • [31] SOME EFFECTS OF RARE EARTH ELEMENTS AND YTTRIUM ON MICROBIAL GROWTH
    TALBURT, DE
    JOHNSON, GT
    MYCOLOGIA, 1967, 59 (03) : 492 - &
  • [32] SPECTROPHOTOMETRIC DETERMINATION OF THE SUM OF RARE-EARTH ELEMENTS AND YTTRIUM SUBGROUP ELEMENTS
    KIRILLOV, AI
    SHAULINA, LP
    CHURAKOVA, GN
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII KHIMIYA I KHIMICHESKAYA TEKHNOLOGIYA, 1981, 24 (11): : 1448 - 1450
  • [33] HETERONIOBATES OF RARE-EARTH ELEMENTS IN CERIUM AND YTTRIUM SUBGROUPS
    BEZRUKOV, VI
    LAPITSKI.AV
    KLIMOV, VV
    KISEL, NG
    DOKLADY AKADEMII NAUK SSSR, 1966, 169 (05): : 1075 - &
  • [34] DETERMINATION OF RARE-EARTH ELEMENTS IN YTTRIUM-OXIDE BY SECONDARY ION MASS-SPECTROMETRY
    MORIKAWA, H
    UWAMINO, Y
    ISHIZUKA, T
    FRESENIUS JOURNAL OF ANALYTICAL CHEMISTRY, 1990, 336 (03): : 210 - 214
  • [35] CHEMICAL-SPECTRAL DETERMINATION OF LIGHT RARE-EARTH ELEMENTS IN COMPOUNDS OF YTTRIUM AND HEAVY RARE-EARTH ELEMENTS
    VAKULENK.LI
    KAPLAN, BY
    MERISOV, YI
    MIKHAILI.AI
    SKRIPKIN, GS
    ZAVODSKAYA LABORATORIYA, 1973, 39 (11): : 1342 - 1344
  • [36] Gallium oxide as a host for rare earth elements
    Muth, JF
    Gollakota, P
    Dhawan, A
    Porter, HL
    Saripalli, YN
    Lunardi, LM
    Rare-Earth Doping for Optoelectronic Applications, 2005, 866 : 177 - 182
  • [37] STUDIES ON ANALYSIS OF RARE EARTHS .2. SPECTROGRAPHIC DETERMINATION OF RARE EARTHS AND NON-RARE EARTH METALLIC ELEMENTS IN YTTRIUM OXIDE
    SATO, M
    MATSUI, H
    MATSUBAR.T
    JAPAN ANALYST, 1971, 20 (02): : 215 - &
  • [38] Effect of mechanical activation on the reactivity of oxides of rare earth elements and yttrium
    A. M. Kalinkin
    E. V. Kalinkina
    O. A. Zalkind
    T. N. Vasiljeva
    Russian Journal of Applied Chemistry, 2004, 77 : 1598 - 1605
  • [39] Effect of mechanical activation on the reactivity of oxides of rare earth elements and yttrium
    Kalinkin, AM
    Kalinkina, EV
    Zalkind, OA
    Vasiljeva, TN
    RUSSIAN JOURNAL OF APPLIED CHEMISTRY, 2004, 77 (10) : 1598 - 1605
  • [40] Extraction of Yttrium-Subgroup Rare Earth Elements with Aliquat 336
    O. V. Yurasova
    D. A. Samieva
    S. N. Ivanova
    I. M. Ermochenkov
    S. A. Vasilenko
    Russian Journal of Applied Chemistry, 2021, 94 : 903 - 910