(m, n)-Hom-Lie algebras

被引:8
|
作者
Ma, Tianshui [1 ,2 ]
Zheng, Huihui [1 ]
机构
[1] Henan Normal Univ, Sch Math & Informat Sci, Dept Math, Xinxiang 453007, Peoples R China
[2] Henan Normal Univ, Sch Math & Informat Sci, Henan Engn Lab Big Data Stat Anal & Optimal Contr, Xinxiang 453007, Peoples R China
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2018年 / 92卷 / 1-2期
基金
中国博士后科学基金;
关键词
Horn-Lie algebra; monoidal Horn-Yetter Drinfeld category; YETTER-DRINFELD CATEGORIES; QUASI-LIE ALGEBRAS; HOM-HOPF ALGEBRAS; ASSOCIATIVE ALGEBRAS;
D O I
10.5486/PMD.2018.7703
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (H, beta) be a monoidal Hom-Hopf algebra, and (A, alpha) an algebra in the (m, n)-Hom-Yetter-Drinfeld category (H) over tilde ((HYD)-Y-H(Z)), where m, n is an element of Z (the set of integers). In this paper, we introduce the notion of (m, n)-Hom-Lie algebra (i.e., Lie algebras in the category (H) over tilde ((HYD)-Y-H(Z))), and then prove that (A, alpha) can give rise to an (m, n)-Hom-Lie algebra with suitable Lie bracket when the braiding T in (H) over tilde ((HYD)-Y-H(Z)) is symmetric on (A, alpha). We also show that if also (A, alpha) is a sum of two (H, beta)-commutative Hom-subalgebras, then [A, A] [A, A] - 0.
引用
收藏
页码:59 / 78
页数:20
相关论文
共 50 条
  • [31] Centroid Hom-associative Algebras and Centroid Hom-Lie Algebras
    Yu Xiu Bai
    Leonid A. Bokut
    Yu Qun Chen
    Ze Rui Zhang
    [J]. Acta Mathematica Sinica, English Series, 2024, 40 : 935 - 961
  • [32] O-operators on hom-Lie algebras
    Mishra, Satyendra Kumar
    Naolekar, Anita
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (12)
  • [33] HOMOLOGY THEORY OF MULTIPLICATIVE HOM-LIE ALGEBRAS
    Xu, Maosen
    Wu, Zhixiang
    [J]. MATHEMATICAL REPORTS, 2023, 25 (02): : 331 - 347
  • [34] On universal central extensions of Hom-Lie algebras
    Casas, J. M.
    Insua, M. A.
    Pacheco, N.
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2015, 44 (02): : 277 - 288
  • [35] Classification of Multiplicative Simple Hom-Lie Algebras
    Chen, Xue
    Han, Wei
    [J]. JOURNAL OF LIE THEORY, 2016, 26 (03) : 767 - 775
  • [36] The Hom-Yang-Baxter equation and Hom-Lie algebras
    Yau, Donald
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (05)
  • [37] Hom-Lie Admissible Hom-Coalgebras and Hom-Hopf Algebras
    Makhlouf, Abdenacer
    Silvestrov, Sergei
    [J]. GENERALIZED LIE THEORY IN MATHEMATICS, PHYSICS AND BEYOND, 2009, : 189 - +
  • [38] Geometry of Almost Kenmotsu Hom-Lie Algebras
    Nourmohammadifar, L.
    Peyghan, E.
    Uddin, S.
    [J]. QUAESTIONES MATHEMATICAE, 2022, 45 (04) : 605 - 626
  • [39] Extensions of hom-Lie algebras in terms of cohomology
    Abdoreza R. Armakan
    Mohammed Reza Farhangdoost
    [J]. Czechoslovak Mathematical Journal, 2017, 67 : 317 - 328
  • [40] Ado theorem for nilpotent Hom-Lie algebras
    Makhlouf, Abdenacer
    Zusmanovich, Pasha
    [J]. INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2019, 29 (07) : 1343 - 1365