(m, n)-Hom-Lie algebras

被引:8
|
作者
Ma, Tianshui [1 ,2 ]
Zheng, Huihui [1 ]
机构
[1] Henan Normal Univ, Sch Math & Informat Sci, Dept Math, Xinxiang 453007, Peoples R China
[2] Henan Normal Univ, Sch Math & Informat Sci, Henan Engn Lab Big Data Stat Anal & Optimal Contr, Xinxiang 453007, Peoples R China
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2018年 / 92卷 / 1-2期
基金
中国博士后科学基金;
关键词
Horn-Lie algebra; monoidal Horn-Yetter Drinfeld category; YETTER-DRINFELD CATEGORIES; QUASI-LIE ALGEBRAS; HOM-HOPF ALGEBRAS; ASSOCIATIVE ALGEBRAS;
D O I
10.5486/PMD.2018.7703
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (H, beta) be a monoidal Hom-Hopf algebra, and (A, alpha) an algebra in the (m, n)-Hom-Yetter-Drinfeld category (H) over tilde ((HYD)-Y-H(Z)), where m, n is an element of Z (the set of integers). In this paper, we introduce the notion of (m, n)-Hom-Lie algebra (i.e., Lie algebras in the category (H) over tilde ((HYD)-Y-H(Z))), and then prove that (A, alpha) can give rise to an (m, n)-Hom-Lie algebra with suitable Lie bracket when the braiding T in (H) over tilde ((HYD)-Y-H(Z)) is symmetric on (A, alpha). We also show that if also (A, alpha) is a sum of two (H, beta)-commutative Hom-subalgebras, then [A, A] [A, A] - 0.
引用
收藏
页码:59 / 78
页数:20
相关论文
共 50 条
  • [1] Fuzzy Hom-Lie Ideals of Hom-Lie Algebras
    Shaqaqha, Shadi
    [J]. AXIOMS, 2023, 12 (07)
  • [2] Almost contact Hom-Lie algebras and Sasakian Hom-Lie algebras
    Peyghan, E.
    Nourmohammadifar, L.
    [J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2022, 21 (01)
  • [3] On Hom-Lie algebras
    Sheng, Yunhe
    Xiong, Zhen
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (12): : 2379 - 2395
  • [4] On (n+1)-Hom-Lie algebras induced by n-Hom-Lie algebras
    Kitouni, Abdennour
    Makhlouf, Abdenacer
    Silvestrov, Sergei
    [J]. GEORGIAN MATHEMATICAL JOURNAL, 2016, 23 (01) : 75 - 95
  • [5] Differential geometry of Hom-Lie algebras and Hom-Lie algebroids
    Sahin, Bayram
    Sahin, Fulya
    [J]. QUAESTIONES MATHEMATICAE, 2024, 47 (03) : 609 - 635
  • [6] Hom-Lie Algebras and Hom-Lie Groups, Integration and Differentiation
    Jiang, Jun
    Mishra, Satyendra Kumar
    Sheng, Yunhe
    [J]. SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2020, 16
  • [7] ON HOM-LIE TRIPLE SYSTEMS AND INVOLUTIONS OF HOM-LIE ALGEBRAS
    Yara, Hamdiatou
    Zoungrana, Patricia L.
    [J]. KOREAN JOURNAL OF MATHEMATICS, 2022, 30 (02): : 363 - 373
  • [8] Hom-Lie Algebras with Derivations
    Li, Yizheng
    Wang, Dingguo
    [J]. FRONTIERS OF MATHEMATICS, 2024, 19 (03): : 535 - 550
  • [9] Restricted hom-Lie algebras
    Guan, Baoling
    Chen, Liangyun
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2015, 44 (04): : 823 - 837
  • [10] On the Capability of Hom-Lie Algebras
    José Manuel Casas
    Xabier García-Martínez
    [J]. Mediterranean Journal of Mathematics, 2022, 19