Monotonicity properties of generalized elliptic integrals with respect to the parameter

被引:7
|
作者
Qiu, Song-Liang [1 ,2 ]
Ma, Xiao-Yan [1 ]
Bao, Qi [1 ]
机构
[1] Zhejiang Sci Tech Univ, Dept Math, Hangzhou 310018, Peoples R China
[2] Lishui Univ, Dept Math, Lishui 323000, Peoples R China
基金
中国国家自然科学基金;
关键词
Generalized elliptic integrals; Dependence on parameter; Complete elliptic integrals; Monotonicity; Necessary and sufficient condition; Inequality; HYPERGEOMETRIC-FUNCTIONS; FUNCTIONAL INEQUALITIES; ASYMPTOTIC EXPANSIONS; QUOTIENTS;
D O I
10.1016/j.jmaa.2020.124469
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a is an element of (0, 1/2] and r is an element of (0, 1), let K-a(r) and E-a(r) (K(r) and E(r)) denote the generalized elliptic integrals (the complete elliptic integrals, respectively) of the first and second kinds, respectively. In this paper, the authors present the necessary and sufficient conditions under which certain familiar combinations defined in terms of the generalized elliptic integrals and elementary functions are monotone in a is an element of (0, 1/2]. By these results, sharp bounds expressed in terms of K(r), E(r) and elementary functions are obtained for K-a(r) and E-a(r), thus showing the dependence on the parameter a of K-a(r) and E-a(r), and substantially improving the known related results. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:31
相关论文
共 50 条
  • [21] Elliptic polylogarithms and Feynman parameter integrals
    Broedel, Johannes
    Duhr, Claude
    Dulat, Falko
    Penante, Brenda
    Tancredi, Lorenzo
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, (05):
  • [22] Elliptic polylogarithms and Feynman parameter integrals
    Johannes Broedel
    Claude Duhr
    Falko Dulat
    Brenda Penante
    Lorenzo Tancredi
    Journal of High Energy Physics, 2019
  • [23] Monotonicity and inequalities related to complete elliptic integrals of the second kind
    Wang, Fei
    Guo, Bai-Ni
    Qi, Feng
    AIMS MATHEMATICS, 2020, 5 (03): : 2732 - 2742
  • [24] Monotonicity and functional inequalities for the complete p-elliptic integrals
    Zhang, Xiaohui
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 453 (02) : 942 - 953
  • [25] Generalized elliptic integrals and modular equations
    Anderson, GD
    Qiu, SL
    Vamanamurthy, MK
    Vuorinen, M
    PACIFIC JOURNAL OF MATHEMATICS, 2000, 192 (01) : 1 - 37
  • [26] Generalized Grotzsch ring function and generalized elliptic integrals
    Ma Xiao-yan
    Qiu Song-liang
    Tu Guo-yan
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2016, 31 (04) : 458 - 468
  • [27] DEFINITE INTEGRALS OF GENERALIZED CERTAIN CLASS OF INCOMPLETE ELLIPTIC INTEGRALS
    Chaurasia, V. B. L.
    Dubey, Ravi Shanker
    TAMKANG JOURNAL OF MATHEMATICS, 2013, 44 (02): : 197 - 208
  • [28] On the absolute monotonicity of generalized elliptic integral of the first kind
    Chen, Yajun
    Wu, Jiahui
    Zhao, Tiehong
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2023, 117 (04)
  • [29] On the monotonicity and convexity for generalized elliptic integral of the first kind
    Chen, Ya-jun
    Zhao, Tie-hong
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2022, 116 (02)
  • [30] On the monotonicity and convexity for generalized elliptic integral of the first kind
    Ya-jun Chen
    Tie-hong Zhao
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2022, 116