Assessing Human Activity in Elderly People Using Non-Intrusive Load Monitoring

被引:49
|
作者
Alcala, Jose M. [1 ]
Urena, Jesus [1 ]
Hernandez, Alvaro [1 ]
Gualda, David [1 ]
机构
[1] Univ Alcala, Escuela Politecn, Ctra Madrid Barcelona, Km 33,600, Alcala De Henares 28871, Spain
关键词
non-intrusive load monitoring; activity monitoring; ambient intelligence (AmI); activity ecognition (AR); ambient assisted living (AAL); ACTIVITY RECOGNITION; SYSTEMS; INDEX;
D O I
10.3390/s17020351
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The ageing of the population, and their increasing wish of living independently, are motivating the development of welfare and healthcare models. Existing approaches based on the direct heath-monitoring using body sensor networks (BSN) are precise and accurate. Nonetheless, their intrusiveness causes non-acceptance. New approaches seek the indirect monitoring through monitoring activities of daily living (ADLs), which proves to be a suitable solution. ADL monitoring systems use many heterogeneous sensors, are less intrusive, and are less expensive than BSN, however, the deployment and maintenance of wireless sensor networks (WSN) prevent them from a widespread acceptance. In this work, a novel technique to monitor the human activity, based on non-intrusive load monitoring (NILM), is presented. The proposal uses only smart meter data, which leads to minimum intrusiveness and a potential massive deployment at minimal cost. This could be the key to develop sustainable healthcare models for smart homes, capable of complying with the elderly people' demands. This study also uses the Dempster-Shafer theory to provide a daily score of normality with regard to the regular behavior. This approach has been evaluated using real datasets and, additionally, a benchmarking against a Gaussian mixture model approach is presented.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Residential energy flexibility characterization using non-intrusive load monitoring
    Azizi, Elnaz
    Ahmadiahangar, Roya
    Rosin, Argo
    Martins, Joao
    Lopes, Rui Amaral
    Beheshti, M. TH.
    Bolouki, Sadegh
    SUSTAINABLE CITIES AND SOCIETY, 2021, 75
  • [32] Smart Energy Management System Using Non-intrusive Load Monitoring
    Riya Deshpande
    Shubhankar Hire
    Zakee Ahmed Mohammed
    SN Computer Science, 2022, 3 (2)
  • [33] Towards the Fusion of Intrusive and Non-intrusive Load Monitoring - A Hybrid Approach
    Voelker, Benjamin
    Scholl, Philipp M.
    Schubert, Tobias
    Becker, Bernd
    E-ENERGY'18: PROCEEDINGS OF THE 9TH ACM INTERNATIONAL CONFERENCE ON FUTURE ENERGY SYSTEMS, 2018, : 436 - 438
  • [34] Adaptive Non-Intrusive Load Monitoring Model using Bayesian Learning
    Iksan, Nur
    Supangkat, Suhono Harso
    2014 INTERNATIONAL CONFERENCE ON ICT FOR SMART SOCIETY (ICISS), 2014, : 232 - 235
  • [35] A Dataset for Non-Intrusive Load Monitoring: Design and Implementation
    Renaux, Douglas Paulo Bertrand
    Pottker, Fabiana
    Ancelmo, Hellen Cristina
    Lazzaretti, Andre Eugenio
    Lima, Carlos Raiumundo Erig
    Linhares, Robson Ribeiro
    Oroski, Elder
    Nolasco, Lucas da Silva
    Lima, Lucas Tokarski
    Mulinari, Bruna Machado
    da Silva, Jose Reinaldo Lopes
    Omori, Julio Shigeaki
    dos Santos, Rodrigo Braun
    ENERGIES, 2020, 13 (20)
  • [36] Review on key techniques of non-intrusive load monitoring
    Guo H.
    Lu J.
    Yang P.
    Liu Z.
    Dianli Zidonghua Shebei/Electric Power Automation Equipment, 2021, 41 (01): : 135 - 144
  • [37] Deep Learning Application to Non-Intrusive Load Monitoring
    Nguyen Viet Linh
    Arboleya, Pablo
    2019 IEEE MILAN POWERTECH, 2019,
  • [38] Non-Intrusive Load Monitoring Applied to AC Railways
    Mariscotti, Andrea
    ENERGIES, 2022, 15 (11)
  • [39] Detecting the novel appliance in non-intrusive load monitoring
    Guo, Xiaochao
    Wang, Chao
    Wu, Tao
    Li, Ruiheng
    Zhu, Houyi
    Zhang, Huaiqing
    APPLIED ENERGY, 2023, 343
  • [40] Disaggregating Transform Learning for Non-Intrusive Load Monitoring
    Gaur, Megha
    Majumdar, Angshul
    IEEE ACCESS, 2018, 6 : 46256 - 46265