3-D Simulation of Nanopore Structure for DNA Sequencing

被引:9
|
作者
Park, Jun-Mo [1 ,2 ]
Pak, Y. Eugene [3 ]
Chun, Honggu [4 ]
Lee, Jong-Ho [1 ,2 ]
机构
[1] Seoul Natl Univ, Sch Elect Engn, Seoul 151742, South Korea
[2] Seoul Natl Univ, ISRC, Seoul 151742, South Korea
[3] Seoul Natl Univ, Adv Inst Convergence Technol, Seoul 443270, South Korea
[4] Korea Univ, Seoul 136703, South Korea
关键词
Nanopore; 3D Simulation; Electron Affinity; Mobility; Parameter Modeling;
D O I
10.1166/jnn.2012.6384
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this paper, we propose a method for simulating nanopore structure by using conventional 3-D simulation tool to mimic the I-V behavior of the nanopore structure. In the simulation, we use lightly doped silicon for ionic solution where some parameters like electron affinity and dielectric constant are fitted to consider the ionic solution. By using this method, we can simulate the I-V behavior of nanopore structure depending on the location and the size of the sphere shaped silicon oxide which is considered to be an indicator of a DNA base. In addition, we simulate an Ionic Field Effect Transistor (IFET) which has basically the nanopore structure, and show that the simulated curves follow sufficiently the I-V behavior of the measurement data. Therefore, we think it is reasonable to apply parameter modeling mentioned above to simulate nanopore structure. The key idea is to modify electron affinity of silicon which is used to mimic the KCI solution to avoid band bending and depletion inside the nanopore. We could efficiently utilize conventional 3-D simulation tool to simulate the I-V behavior of nanopore structures.
引用
收藏
页码:5160 / 5163
页数:4
相关论文
共 50 条
  • [41] Nanopore sequencing: An enrichment-free alternative to mitochondrial DNA sequencing
    Zascavage, Roxanne R.
    Thorson, Kelcie
    Planz, John V.
    ELECTROPHORESIS, 2019, 40 (02) : 272 - 280
  • [42] Rapid Multiplex Small DNA Sequencing on the MinION Nanopore Sequencing Platform
    Wei, Shan
    Weiss, Zachary R.
    Williams, Zev
    G3-GENES GENOMES GENETICS, 2018, 8 (05): : 1649 - 1657
  • [43] 3-D structure, volume, and DNA content of erythrocyte nuclei of polyploid fish
    Bytyutskyy, Dmytro
    Kholodnyy, Vitaliy
    Flajshans, Martin
    CELL BIOLOGY INTERNATIONAL, 2014, 38 (06) : 708 - 715
  • [44] 3-D NUMERICAL SIMULATION OF STRUCTURE OPTIMIZATION OF RECTANGULAR FIN TUBE ECONOMIZER
    Lue Yu-kun
    Lu Quan
    PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON NANOCHANNELS, MICROCHANNELS, AND MINICHANNELS, PTS A AND B, 2008, : 483 - 488
  • [45] 3-D computational simulation of paper handsheet structure and prediction of apparent density
    Vincent, Remi
    Rueff, Martine
    Voillot, Christian
    TAPPI JOURNAL, 2009, 8 (09): : 10 - 17
  • [46] Nanopore Sequencing Accurately Identifies the Cisplatin Adduct on DNA
    Ma, Fubo
    Yan, Shuanghong
    Zhang, Jinyue
    Wang, Yu
    Wang, Liying
    Wang, Yuqin
    Zhang, Shanyu
    Du, Xiaoyu
    Zhang, Panke
    Chen, Hong-Yuan
    Huang, Shuo
    ACS SENSORS, 2021, 6 (08) : 3082 - 3092
  • [47] Detecting DNA cytosine methylation using nanopore sequencing
    Simpson, Jared T.
    Workman, Rachael E.
    Zuzarte, P. C.
    David, Matei
    Dursi, L. J.
    Timp, Winston
    NATURE METHODS, 2017, 14 (04) : 407 - +
  • [48] Enrichment by hybridisation of long DNA fragments for Nanopore sequencing
    Eckert, Sabine E.
    Chan, Jackie Z. -M.
    Houniet, Darren
    Breuer, Judy
    Speight, Graham
    MICROBIAL GENOMICS, 2016, 2 (09): : e000087
  • [49] Nanopore-based technologies beyond DNA sequencing
    Yi-Lun Ying
    Zheng-Li Hu
    Shengli Zhang
    Yujia Qing
    Alessio Fragasso
    Giovanni Maglia
    Amit Meller
    Hagan Bayley
    Cees Dekker
    Yi-Tao Long
    Nature Nanotechnology, 2022, 17 : 1136 - 1146
  • [50] Detection and assembly of extrachromosomal DNA in tumors with nanopore sequencing
    Aganezov, Sergey
    Beaulaurier, John
    Harrington, Eoghan
    Juul, Sissel
    CANCER RESEARCH, 2022, 82 (12)