Local Linear Estimation of Jump-Diffusion Models by Using Asymmetric Kernels

被引:8
|
作者
Hanif, Muhammad [1 ]
机构
[1] PMAS Arid Agr Univ, Dept Math & Stat, Rawalpindi, Pakistan
关键词
Beta kernel; Gamma kernel; Harris recurrence; Jump-diffusion model; Local time; Local linear method; Nonparametric estimation; NONPARAMETRIC-ESTIMATION; REGRESSION SMOOTHERS; DENSITY ESTIMATORS; CONSISTENCY;
D O I
10.1080/07362994.2013.811574
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article addresses the problem of nonparametric estimation of the first and second infinitesimal moments by using the local linear method of the underlying jump-diffusion models. The motivation behind the study is to use the asymmetric kernels instead of standard kernel smoothing. The basic idea relies on replacing the symmetric kernel by asymmetric kernel and provides a new way of obtaining the nonparametric estimation for jump-diffusion models. We prove that the estimators based on the local linear method for jump-diffusion models are consistent and asymptotically follow normal distribution under the condition of recurrence and stationarity.
引用
收藏
页码:956 / 974
页数:19
相关论文
共 50 条