Deep learning for radio propagation: Using image-driven regression to estimate path loss in urban areas

被引:22
|
作者
Sotiroudis, Sotirios P. [1 ]
Goudos, Sotirios K. [1 ]
Siakavara, Katherine [1 ]
机构
[1] Aristotle Univ Thessaloniki, Phys Dept, Thessaloniki, Greece
来源
ICT EXPRESS | 2020年 / 6卷 / 03期
关键词
Deep learning; Artificial intelligence; Image-driven regression; Radio propagation; Path loss prediction;
D O I
10.1016/j.icte.2020.04.008
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Radio propagation modeling and path loss prediction have been the subject of many machine learning-based estimation attempts. Our current work uses deep learning for the task in question, trying to exploit the potential of applying convolutional neural networks in order to perform predictions based on images. A comparison between data-driven and image-driven estimations has been carried out in order to assess the proposed method. The results show that an appropriately chosen image can, per se, be treated as an alternative to a vector of tabular data and produce reliable predictions. The effect of the image's size has also been examined. (C) 2020 The Korean Institute of Communications and Information Sciences (KICS). Publishing services by Elsevier B.V.
引用
收藏
页码:160 / 165
页数:6
相关论文
共 50 条
  • [41] Channel Path Loss Prediction Using Satellite Images: A Deep Learning Approach
    Wang, Chenlong
    Ai, Bo
    He, Ruisi
    Yang, Mi
    Zhou, Shun
    Yu, Long
    Zhang, Yuxin
    Qiu, Zhicheng
    Zhong, Zhangdui
    Fan, Jianhua
    IEEE Transactions on Machine Learning in Communications and Networking, 2024, 2 : 1357 - 1368
  • [42] Predicting Ozone Pollution in Urban Areas Using Machine Learning and Quantile Regression Models
    Cueva, Fernando
    Saquicela, Victor
    Sarmiento, Juan
    Cabrera, Fanny
    INFORMATION AND COMMUNICATION TECHNOLOGIES (TICEC 2021), 2021, 1456 : 281 - 296
  • [43] Multiscale Decomposition Prediction of Propagation Loss in Evaporation Duct Using Deep Learning
    Ji, Hanjie
    Zhang, Jinpeng
    Yin, Bo
    Zhang, Yushi
    2022 CROSS STRAIT RADIO SCIENCE & WIRELESS TECHNOLOGY CONFERENCE, CSRSWTC, 2022,
  • [44] Path loss prediction in urban environment using learning machines and dimensionality reduction techniques
    Piacentini M.
    Rinaldi F.
    Computational Management Science, 2011, 8 (4) : 371 - 385
  • [45] Deep Learning-Based Path Loss Prediction for Fifth-Generation New Radio Vehicle Communications
    Sung, Sangmo
    Choi, Wonseo
    Kim, Hokeun
    Jung, Jae-Il
    IEEE ACCESS, 2023, 11 : 75295 - 75310
  • [46] Predicting Path Loss Distribution of an Area From Satellite Images Using Deep Learning
    Ahmadien, Omar
    Ates, Hasan F.
    Baykas, Tuncer
    Gunturk, Bahadir K.
    IEEE ACCESS, 2020, 8 : 64982 - 64991
  • [47] Propagation path loss through the urban foliated semi-confined environment using parabolic equations
    Souza, J. F.
    Valente, Z. A.
    Magno, F. N. B.
    Cavalcante, G. P. S.
    Costa, J. C.
    2006 IEEE NINTH INTERNATIONAL SYMPOSIUM ON SPREAD SPECTRUM TECHNIQUES AND APPLICATIONS, PROCEEDINGS, 2006, : 356 - 360
  • [48] Enhancing Machine Learning Models for Path Loss Prediction Using Image Texture Techniques
    Sotiroudis, Sotirios P.
    Siakavara, Katherine
    Koudouridis, Georgios P.
    Sarigiannidis, Panagiotis
    Goudos, Sotirios K.
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2021, 20 (08): : 1443 - 1447
  • [49] Developed channel propagation models and path loss measurements for wireless communication systems using regression analysis techniques
    Yahia A. Zakaria
    Ehab K. I. Hamad
    A. S. Abd Elhamid
    K. M. El-Khatib
    Bulletin of the National Research Centre, 45 (1)
  • [50] Snow loss modeling for solar modules using image processing and deep learning
    Zhang, Xinyi
    Araji, Mohamad T.
    SUSTAINABLE ENERGY GRIDS & NETWORKS, 2023, 34