Exact cumulant Kramers-Moyal-like expansion

被引:5
|
作者
Morgado, W. A. M. [1 ,2 ]
机构
[1] Pontificia Univ Catolica Rio de Janeiro, Dept Fis, BR-22452970 Rio De Janeiro, Brazil
[2] Natl Inst Sci & Technol Complex Syst, BR-22452970 Rio De Janeiro, Brazil
关键词
Kramers-Moyal Equation; Cumulants; BROWNIAN-MOTION; MASTER-EQUATIONS; MARKOV-PROCESSES; NOISE;
D O I
10.1016/j.physa.2015.07.012
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We derive an exact equation, a Cumulant Kramers-Moyal Equation (CKME), quite similar to the Kramers-Moyal Equation (KME), for the probability distribution of a Markovian dynamical system. It can be applied to any well behaved (converging cumulants) continuous time systems, such as Langevin equations or other models. An interesting but significant difference with respect to the KME is that their jump-moments are proportional to cumulants of the dynamical variables, but not proportional to central moments, as is the case for the KME. In fact, they still obey a weaker version of Pawula's theorem, namely Marcinkiewicz's theorem. We compare the results derived from the equations herein with the ones obtained by computing via Gaussian and biased, and unbiased, Poisson Langevin dynamics and a Poisson non-Langevin model. We obtain the exact CKME time-evolution equation for the systems, and in several cases, those are distinct from the Fokker-Planck equation or the KME. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:493 / 508
页数:16
相关论文
共 50 条
  • [31] Non-homogeneous random walks, generalised master equations, fractional Fokker-Planck equations, and the generalised Kramers-Moyal expansion
    R. Metzler
    The European Physical Journal B - Condensed Matter and Complex Systems, 2001, 19 : 249 - 258
  • [32] Cumulant–Cumulant Relations in Free Probability Theory from Magnus’ Expansion
    Adrian Celestino
    Kurusch Ebrahimi-Fard
    Frédéric Patras
    Daniel Perales
    Foundations of Computational Mathematics, 2022, 22 : 733 - 755
  • [33] Extracting stochastic governing laws by non-local Kramers-Moyal formulae
    Lu, Yubin
    Li, Yang
    Duan, Jinqiao
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2022, 380 (2229):
  • [34] ON SOLUTIONS OF TRUNCATED KRAMERS-MOYAL EXPANSIONS - CONTINUUM APPROXIMATIONS TO THE POISSON-PROCESS
    RISKEN, H
    VOLLMER, HD
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1987, 66 (02): : 257 - 262
  • [35] Arbitrary-Order Finite-Time Corrections for the Kramers-Moyal Operator
    Gorjao, Leonardo Rydin
    Witthaut, Dirk
    Lehnertz, Klaus
    Lind, Pedro G.
    ENTROPY, 2021, 23 (05)
  • [36] INFINITE ORDER CUMULANT EXPANSION FOR SPINS
    PARRINEL.M
    ARAI, T
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1971, 16 (04): : 629 - &
  • [38] Kramers–Moyal analysis of interplanetary magnetic field fluctuations at sub-ion scales
    Simone Benella
    Mirko Stumpo
    Giuseppe Consolini
    Tommaso Alberti
    Monica Laurenza
    Emiliya Yordanova
    Rendiconti Lincei. Scienze Fisiche e Naturali, 2022, 33 : 721 - 728
  • [39] Estimating Kramers-Moyal coefficients in short and non-stationary data sets
    van Mourik, AM
    Daffertshofer, A
    Beek, PJ
    PHYSICS LETTERS A, 2006, 351 (1-2) : 13 - 17
  • [40] CRITIQUE OF GENERALIZED CUMULANT EXPANSION METHOD
    FOX, RF
    JOURNAL OF MATHEMATICAL PHYSICS, 1976, 17 (07) : 1148 - 1153