A New Method for Solving Convection-Diffusion Equations

被引:0
|
作者
Liao, Wenyuan [1 ]
Zhu, Jianping [2 ]
机构
[1] Univ Calgary, Dept Math & Stat, Calgary, AB T2N 1N4, Canada
[2] Univ Texas Arlington, Dept Math, Arlington, TX 76019 USA
关键词
D O I
10.1109/CSEW.2008.27
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
When solving convection-diffusion equations using the finite difference schemes, the convection term is usually discretized by the upwind schemes to avoid oscillations. A method to eliminate the convection term form convection-diffusion equations is presented in this paper The new approach makes it feasible to solve convection-diffusion equations using central difference schemes without oscillations. It can also be easily combined with the Pade approximation to achieve fourth-order accuracy Numerical examples involving one-dimensional equations are presented in the paper to demonstrate the accuracy and robustness of the new approach.
引用
收藏
页码:107 / +
页数:2
相关论文
共 50 条
  • [21] Lattice Boltzmann Method for Stochastic Convection-Diffusion Equations
    Zhao, Weifeng
    Huang, Juntao
    Yong, Wen-An
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2021, 9 (02): : 536 - 563
  • [22] Explicit Finite Difference Method For Convection-Diffusion Equations
    Feng, Qinghua
    WORLD CONGRESS ON ENGINEERING 2009, VOLS I AND II, 2009, : 1094 - 1097
  • [23] A Hermite Finite Element Method for Convection-diffusion Equations
    Ruas, V.
    Trales, P.
    11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013), 2013, 1558 : 2213 - 2216
  • [24] An operator splitting method for nonlinear convection-diffusion equations
    Karlsen, KH
    Risebro, NH
    NUMERISCHE MATHEMATIK, 1997, 77 (03) : 365 - 382
  • [25] APPROXIMATE CONVECTION-DIFFUSION EQUATIONS
    Perumal, Muthiah
    Raju, Kittur G. Ranga
    JOURNAL OF HYDROLOGIC ENGINEERING, 1999, 4 (02) : 160 - 164
  • [26] Implicit characteristic Galerkin method for convection-diffusion equations
    Li, XK
    Wu, WH
    Zienkiewicz, OC
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2000, 47 (10) : 1689 - 1708
  • [27] An operator splitting method for nonlinear convection-diffusion equations
    Kenneth Hvistendahl Karlsen
    Nils Henrik Risebro
    Numerische Mathematik, 1997, 77 : 365 - 382
  • [28] DISCONTINUOUS GALERKIN METHOD FOR FRACTIONAL CONVECTION-DIFFUSION EQUATIONS
    Xu, Qinwu
    Hesthaven, Jan S.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (01) : 405 - 423
  • [29] Soution of Convection-Diffusion Equations
    Peng, Yamian
    Liu, Chunfeng
    Shi, Linan
    INFORMATION COMPUTING AND APPLICATIONS, ICICA 2013, PT II, 2013, 392 : 546 - 555
  • [30] A stable radial basis function partition of unity method for solving convection-diffusion equations on surfaces
    Liu, Yajun
    Qiao, Yuanyang
    Feng, Xinlong
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2023, 155 : 148 - 159