Approximate Frequent Pattern Discovery Over Data Stream

被引:0
|
作者
Kerdprasop, Kittisak [1 ]
Kerdprasop, Nittaya [1 ]
机构
[1] Suranaree Univ Technol, DEKD Res Unit, Sch Comp Engn, 111 Univ Ave, Nakhon Ratchasima 30000, Thailand
关键词
Frequent pattern discovery; Approximate algorithm; Data stream analysis;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Frequent pattern discovery over data stream is a hard problem because a continuously generated nature of stream does not allow a revisit on each data element. Furthermore, pattern discovery process must be fast to produce timely. results. Based on these requirements, we propose an approximate approach to tackle the problem of discovering frequent patterns over continuous stream. Our approximation algorithm is intended to be applied to process a stream prior to the pattern discovery process. The results of approximate frequent pattern discovery have been reported in the paper.
引用
下载
收藏
页码:478 / +
页数:2
相关论文
共 50 条
  • [1] Approximate Frequent Itemset Discovery from Data Stream
    Ciampi, Anna
    Fumarola, Fabio
    Appice, Annalisa
    Malerba, Donato
    AI (ASTERISK) IA 2009: EMERGENT PERSPECTIVES IN ARTIFICIAL INTELLIGENCE, 2009, 5883 : 151 - 160
  • [2] Approximate Frequent Pattern Discovery in Compressed Space
    Fukunaga, Shouhei
    Takabatake, Yoshimasa
    Tomohiro, I
    Sakamoto, Hiroshi
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2018, E101D (03): : 593 - 601
  • [3] Balanced Parallel Frequent Pattern Mining Over Massive Data Stream
    Fu, Xi
    Shi, Lei
    Li, Jing
    2017 THIRD IEEE INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING SERVICE AND APPLICATIONS (IEEE BIGDATASERVICE 2017), 2017, : 50 - 59
  • [4] Mining approximate closed frequent itemsets over stream
    Li, Haifeng
    Lu, Zongjian
    Chen, Hong
    PROCEEDINGS OF NINTH ACIS INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, ARTIFICIAL INTELLIGENCE, NETWORKING AND PARALLEL/DISTRIBUTED COMPUTING, 2008, : 405 - 410
  • [5] Approximate counting of frequent query patterns over XQuery stream
    Yang, LH
    Lee, ML
    Hsu, W
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, 2004, 2973 : 75 - 87
  • [6] Finding frequent items over data stream
    Tu, Li
    Chen, Ling
    Journal of Computational Information Systems, 2010, 6 (12): : 4127 - 4134
  • [7] An Efficient Frequent Pattern Mining Algorithm for Data Stream
    Liu Hualei
    Lin Shukuan
    Qiao Jianzhong
    Yu Ge
    Lu Kaifu
    INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTATION TECHNOLOGY AND AUTOMATION, VOL 1, PROCEEDINGS, 2008, : 757 - 761
  • [8] Adaptive mining the approximate skyline over data stream
    Su, Liang
    Zou, Peng
    Jia, Yan
    COMPUTATIONAL SCIENCE - ICCS 2007, PT 3, PROCEEDINGS, 2007, 4489 : 742 - +
  • [9] Efficient Incremental Itemset Tree for Approximate Frequent Itemset Mining On Data Stream
    Bai, Pavitra S.
    Kumar, Ravi G. K.
    PROCEEDINGS OF THE 2016 2ND INTERNATIONAL CONFERENCE ON APPLIED AND THEORETICAL COMPUTING AND COMMUNICATION TECHNOLOGY (ICATCCT), 2016, : 239 - 242
  • [10] Maintaining Only Frequent Itemsets to Mine Approximate Frequent Itemsets over Online Data Streams
    Wang, Yongyan
    Li, Kun
    Wang, Hongan
    2009 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DATA MINING, 2009, : 381 - 388