Non-Magnetic Non-Reciprocal Microwave Components-State of the Art and Future Directions

被引:19
|
作者
Nagulu, Aravind [1 ]
Krishnaswamy, Harish [1 ]
机构
[1] Columbia Univ, New York, NY 10027 USA
来源
IEEE JOURNAL OF MICROWAVES | 2021年 / 1卷 / 01期
关键词
Circulators; CMOS RF design; isolators; microwave passive circuits (hybrid); nonreciprocal microwave devices;
D O I
10.1109/JMW.2020.3034301
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Non-reciprocal components such as circulators, isolators and gyrators find utility in numerous microwave wireless applications, including high-power transmitters, simultaneous transmit-and-receive communication and radar systems, and emerging cryogenic quantum computing implementations. Today, such components are implemented using ferrite materials, which lose their reciprocity under the application of an external magnetic field. However, ferrite materials are incompatible with semiconductor integrated-circuit fabrication processes, and therefore ferrite non-reciprocal components are difficult to miniaturize to chip scales, rendering them bulky and expensive. This has motivated significant research into non-magnetic non-reciprocal components over the past 50 years. In recent years, this research has been invigorated by breakthroughs in time-modulated non-reciprocal components, and their integration into silicon integrated circuits. This paper reviews the history of non-reciprocal electronics, surveys recent research results in the area, and describes outstanding directions for future research.
引用
收藏
页码:447 / 456
页数:10
相关论文
共 50 条
  • [21] NON-RECIPROCAL 2-CHANNEL MICROWAVE DIVIDERS AND COMBINERS
    VAMBERSKY, MV
    USACHOV, VP
    SHELUKHIN, SA
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII RADIOELEKTRONIKA, 1984, 27 (10): : 16 - 22
  • [22] Non-Reciprocal THz Components Based on Spatiotemporally Modulated Graphene
    Correas-Serrano, D.
    Gomez-Diaz, J. S.
    Sounas, D. L.
    Alvarez-Melcon, A.
    Alu, A.
    2016 10TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION (EUCAP), 2016,
  • [23] Microwave signal conditioning through non-reciprocal phase shifting
    Palomba, Mirko
    Limiti, Ernesto
    IET MICROWAVES ANTENNAS & PROPAGATION, 2013, 7 (10) : 809 - 818
  • [24] Self-oriented CoFe2O4 composites for non-reciprocal microwave components
    Tchangoulian, A.
    Abou Diwan, E.
    Vincent, D.
    Neveu, S.
    Nader, C.
    Habchy, R.
    JEMS 2013 - JOINT EUROPEAN MAGNETIC SYMPOSIA, 2014, 75
  • [25] Fabrication and Manipulation of Ciliary Microrobots with Non-reciprocal Magnetic Actuation
    Sangwon Kim
    Seungmin Lee
    Jeonghun Lee
    Bradley J. Nelson
    Li Zhang
    Hongsoo Choi
    Scientific Reports, 6
  • [26] Bimeron stability and non-reciprocal energy behavior in magnetic nanodots
    Silva-Junior, A. G.
    de Souza, S. F.
    Teixeira, A. W.
    Laroze, D.
    Pereira, A. R.
    Fonseca, J. M.
    Carvalho-Santos, V. L.
    APPLIED PHYSICS LETTERS, 2024, 125 (25)
  • [27] Microwave non-reciprocal coplanar directional coupler based on ferrite materials
    Fekhar, Youcef Hadj Aissa
    Salah-Belkhodja, Faouzi
    Vincent, Didier
    Bronchalo, Enrique
    Tebboune, Wassila
    Naoum, Rafah
    JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2020, 34 (05) : 623 - 633
  • [28] On the Age of Channel State Information for Non-Reciprocal Wireless Links
    Costa, Maice
    Valentin, Stefan
    Ephremides, Anthony
    2015 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2015, : 2356 - 2360
  • [29] Fabrication and Manipulation of Ciliary Microrobots with Non-reciprocal Magnetic Actuation
    Kim, Sangwon
    Lee, Seungmin
    Lee, Jeonghun
    Nelson, Bradley J.
    Zhang, Li
    Choi, Hongsoo
    SCIENTIFIC REPORTS, 2016, 6
  • [30] Organic Ferrimagnetic Material Vanadium Tetracyanoethylene for Non-reciprocal Microwave Applications
    Zhu, Na
    Franson, Andrew
    Kurfman, Seth
    Chilcote, Michael
    Candido, Denis R.
    Nygren, Katherine E.
    Hate, Michael E.
    Buchanan, Kristen S.
    Johnston-Halperin, Ezekiel
    Tang, Hong X.
    PROCEEDINGS OF THE 2020 IEEE/MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM (IMS), 2020, : 528 - 531