An algorithm for iteratively refining the interval including the solution set of parameter-dependent nonlinear equations

被引:0
|
作者
Kanzawa, Y [1 ]
Kashiwagi, M
Oishi, S
机构
[1] Shibaura Inst Technol, Fac Engn, Dept Elect Commun, Tokyo 1088548, Japan
[2] Waseda Univ, Sch Sci & Engn, Dept Informat & Comp Sci, Tokyo 1698555, Japan
关键词
interval analysis; precision guarantee-imposed numerical computations; interval iteration; parameter-dependent nonlinear equations;
D O I
10.1002/ecjc.1085
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An algorithm for arbitrarily minimizing the width of the interval which does not contain the solutions from the interval which contains the solutions of equations using nonlinear functions in which the dimension of the definition domain is greater than the dimension of the value range is proposed in this paper. In addition, the effectiveness of the proposed algorithm is shown using specific numerical examples. (C) 2001 Scripta Technica.
引用
收藏
页码:39 / 44
页数:6
相关论文
共 50 条
  • [21] INTERPOLATION OF INVERSE OPERATORS FOR PRECONDITIONING PARAMETER-DEPENDENT EQUATIONS
    Zahm, Olivier
    Nouy, Anthony
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (02): : A1044 - A1074
  • [23] ANALYTIC ROBUSTNESS OF PARAMETER-DEPENDENT PERTURBATIONS OF DIFFERENCE EQUATIONS
    Barreira, Luis
    Valls, Claudia
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2013, 41 (02) : 335 - 364
  • [24] A PRACTICAL ALGORITHM FOR SOLVING SYSTEMS OF PARAMETER DEPENDENT NONLINEAR EQUATIONS
    BOGACHEV, VM
    DEMIDOV, VM
    TELECOMMUNICATIONS AND RADIO ENGINEERING, 1990, 45 (04) : 64 - 68
  • [25] Spline-type solution to parameter-dependent LMIs
    Masubuchi, I
    Kume, A
    Shimemura, E
    PROCEEDINGS OF THE 37TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 1998, : 1753 - 1758
  • [26] Spline-type solution to parameter-dependent LMIs
    Masubuchi, Izumi
    Kume, Ayato
    Shimemura, Etsujiro
    Proceedings of the IEEE Conference on Decision and Control, 1998, 2 : 1753 - 1758
  • [27] Optimization of the solution of the parameter-dependent Sylvester equation and applications
    Kuzmanovic, Ivana
    Truhar, Ninoslav
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 237 (01) : 136 - 144
  • [28] A comment on the shape of the solution set for systems of interval linear equations with dependent coefficients
    Alefeld, G.
    Kreinovich, V.
    Mayer, G.
    Huth, M.
    Reliable Computing, 2001, 7 (03) : 275 - 277
  • [29] Parameter-dependent linear ordinary differential equations and topology of domains
    Boyko, Vyacheslav M.
    Kunzinger, Michael
    Popovych, Roman O.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 284 : 546 - 575
  • [30] Periodic solutions to parameter-dependent equations with a φ-Laplacian type operator
    Feltrin, Guglielmo
    Sovrano, Elisa
    Zanolin, Fabio
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2019, 26 (05):