Simulation of light transmission through core-shell heterostructure nanomaterials

被引:1
|
作者
Yin, Yunzhen [1 ,2 ]
Bu, Yanyan [3 ]
Wang, Xiangfu [1 ,2 ,4 ,5 ]
机构
[1] Nanjing Univ Posts & Telecommun, Coll Elect & Opt Engn, Nanjing 210023, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Coll Microelect, Nanjing 210023, Peoples R China
[3] Nanjing Univ Posts & Telecommun, Coll Sci, Nanjing 210023, Peoples R China
[4] Nanjing Univ Posts & Telecommun, Natl Elect Sci & Technol Expt Teaching Demonstrat, Nanjing 210023, Peoples R China
[5] Nanjing Univ Posts & Telecommun, Natl Informat & Elect Technol Virtual Simulat Exp, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金;
关键词
Core-shell; Admittance recursive method; Light transmission; RESPONSIVE PHOTOCATALYTIC ACTIVITY; UP-CONVERSION NANOPARTICLES; LANTHANIDE-DOPED NAYF4; NANOCRYSTALS; LUMINESCENCE; THERMOMETRY; EMISSION; PLASMON; TIO2; YB3+;
D O I
10.1016/j.chemphys.2020.110785
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Even though the core-shell nanomaterials were reported as the most efficient up-conversion materials to achieve the energy migration, the light transmission mechanism in core-shell heterostructure and the energy loss induced by multilayer shells have not been studied. In this work, we report the admittance recursive method to simulate the transmission process of TE and TM waves and calculate the light transmission efficiency in core-shell heterostructure. The effects of multilayer shell thickness, wavelength of transmitted light, and critical angle on the light transmittance of core-shell nanoparticles (NPs) are studied. It is found that the TE wave transmission efficiency from NaYF4@SiO2 core-shell heterostructure can reach more than 96.4%, while the values of transmission efficiency of TE and TM waves are less than 40% in NaYF4@SiO2@Ag core-shell-shell heterostructure. Only 1540 nm and 980 nm infrared lights transmit from the NaYF4@Ag@SiO2@Ag multilayer shell heterostructure.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Boosting visible-light photocatalytic tetracycline degradation by constructing core-shell NFO@CN heterostructure
    Li, Yan
    Geng, Jiaye
    Wang, Zhuliang
    Wang, Shujing
    Wang, Meihua
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 939 (939)
  • [22] LIGHT-SCATTERING CHARACTERISTICS OF CORE-SHELL MICROCRYSTALS
    DOTZENKO, AV
    EFREMOV, AM
    LOIKO, VA
    [J]. ZHURNAL NAUCHNOI I PRIKLADNOI FOTOGRAFII, 1989, 34 (04): : 299 - 301
  • [23] Scattering of infrared light by dielectric core-shell particles
    Thiessen, E.
    Bronold, F. X.
    Heinisch, R. L.
    Fehske, H.
    [J]. PHYSICAL REVIEW A, 2015, 91 (04):
  • [24] Core-shell nanowire light-emitting diodes
    Hayden, O
    Greytak, AB
    Bell, DC
    [J]. ADVANCED MATERIALS, 2005, 17 (06) : 701 - +
  • [25] Simulation of the Faraday effect for the core-shell magnetic nanowire
    Wang, Wang
    Du, An
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2020, 511
  • [26] Simulation and Design of Core-Shell GaN Nanowire LEDs
    Connors, B.
    Povolotskyi, M.
    Hicks, R.
    Klein, Benjamin
    [J]. PHYSICS AND SIMULATION OF OPTOELECTRONIC DEVICES XVIII, 2010, 7597
  • [27] Simulation of the AC susceptibility for a core-shell magnetic nanoparticle
    Cao, Guojia
    Wang, Wang
    Du, An
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2023, 565
  • [28] Core-shell heterostructure-enabled stress engineering in vanadium dioxide nanobeams
    Shin, Ki Hoon
    Bae, Ji Yong
    Lee, Su Yong
    Ahn, Docheon
    Cho, Jiung
    Yoon, Jongwon
    Hong, Woong-Ki
    Sohn, Jung Inn
    [J]. APPLIED MATERIALS TODAY, 2021, 25
  • [29] Manipulation of emission energy in GaAs/AlGaAs core-shell nanowires with radial heterostructure
    Barbosa, B. G.
    Arakaki, H.
    de Souza, C. A.
    Pusep, Yu. A.
    [J]. JOURNAL OF APPLIED PHYSICS, 2014, 115 (11)
  • [30] Hybrid GaAsSb/GaAs Heterostructure Core-Shell Nanowire/Graphene and Photodetector Applications
    Nalamati, Surya
    Devkota, Shisir
    Li, Jia
    Lavelle, Robert
    Huet, Benjamin
    Snyder, David
    Penn, Aubrey
    Garcia, Roberto
    Reynolds, Lewis, Jr.
    Iyer, Shanthi
    [J]. ACS APPLIED ELECTRONIC MATERIALS, 2020, 2 (10) : 3109 - 3120