Factoring Matrices into the Product of Circulant and Diagonal Matrices

被引:14
|
作者
Huhtanen, Marko [1 ]
Peramaki, Allan [2 ]
机构
[1] Univ Oulu, Dept Math Sci, FIN-90570 Oulu 57, Finland
[2] Aalto Univ, Dept Math & Syst Anal, Espoo 02015, Finland
关键词
Circulant matrix; Diagonal matrix; Sparsity structure; Matrix factoring; Polynomial factoring; Multiplicative Fourier compression; DIFFRACTIVE OPTICAL-SYSTEMS; DESIGN;
D O I
10.1007/s00041-015-9395-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A generic matrix is shown to be the product of circulant and diagonal matrices with the number of factors being at most. The demonstration is constructive, relying on first factoring matrix subspaces equivalent to polynomials in a permutation matrix over diagonal matrices into linear factors. For the linear factors, the sum of two scaled permutations is factored into the product of a circulant matrix and two diagonal matrices. Extending the monomial group, both low degree and sparse polynomials in a permutation matrix over diagonal matrices, together with their permutation equivalences, constitute a fundamental sparse matrix structure. Matrix analysis gets largely done polynomially, in terms of permutations only.
引用
收藏
页码:1018 / 1033
页数:16
相关论文
共 50 条
  • [41] On circulant thin Lehman matrices
    Tadashi Sakuma
    Hidehiro Shinohara
    Journal of Algebraic Combinatorics, 2014, 40 : 939 - 959
  • [42] Polynomial equations and circulant matrices
    Kalman, D
    White, JE
    AMERICAN MATHEMATICAL MONTHLY, 2001, 108 (09): : 821 - 840
  • [43] THE STRUCTURE OF MONOMIAL CIRCULANT MATRICES
    WATERHOUSE, WC
    SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1987, 8 (03): : 467 - 482
  • [44] On circulant complex Hadamard matrices
    Arasu, KT
    De Launey, W
    Ma, SL
    DESIGNS CODES AND CRYPTOGRAPHY, 2002, 25 (02) : 123 - 142
  • [45] On circulant thin Lehman matrices
    Sakuma, Tadashi
    Shinohara, Hidehiro
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2014, 40 (04) : 939 - 959
  • [46] Weak convergence in circulant matrices
    Cureg, E
    Mukherjea, A
    JOURNAL OF THEORETICAL PROBABILITY, 2005, 18 (04) : 983 - 1007
  • [47] On the eigenvectors of generalized circulant matrices
    Andrade, Enide
    Carrasco-Olivera, Dante
    Manzaneda, Cristina
    LINEAR & MULTILINEAR ALGEBRA, 2024, 72 (16): : 2639 - 2652
  • [48] Determinants of binary circulant matrices
    Maze, G
    Parlier, H
    2004 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2004, : 120 - 120
  • [49] ON THE NORM OF A GAUSSIAN CIRCULANT MATRICES
    MALLIAVIN, P
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1994, 319 (07): : 745 - 749
  • [50] ITERATES OF FUZZY CIRCULANT MATRICES
    HEMASINHA, R
    PAL, NR
    BEZDEK, JC
    FUZZY SETS AND SYSTEMS, 1993, 60 (02) : 199 - 206