Joint genome-wide association and transcriptome sequencing reveals a complex polygenic network underlying hypocotyl elongation in rapeseed (Brassica napus L.)

被引:10
|
作者
Luo, Xiang [1 ]
Xue, Zhifei [1 ]
Ma, Chaozhi [1 ]
Hu, Kaining [1 ]
Zeng, Ziru [1 ]
Dou, Shengwei [1 ]
Tu, Jinxing [1 ]
Shen, Jinxiong [1 ]
Yi, Bin [1 ]
Fu, Tingdong [1 ]
机构
[1] Huazhong Agr Univ, Natl Ctr Rapeseed Improvement Wuhan, Natl Key Lab Crop Genet Improvement, Wuhan 430070, Peoples R China
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
基金
中国国家自然科学基金;
关键词
CIRCADIAN CLOCK; EXPRESSION ANALYSIS; DATA SETS; ARABIDOPSIS; GENE; TOLERANCE; PATHWAYS; TRAIT; ARCHITECTURE; SOFTWARE;
D O I
10.1038/srep41561
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Hypocotyl elongation is considered an important typical seedling trait contributing directly to an increase in and stabilization of the yield in Brassica napus, but its molecular genetic mechanism is poorly understood. In the present study, hypocotyl lengths of 210 lines were measured in an illuminated culture room. A genome-wide association study (GWAS) was performed with 23,435 single nucleotide polymorphisms (SNPs) for hypocotyl length. Three lines with long hypocotyl length and three lines with short hypocotyl length from one doubled haploid line (DH) population were used for transcriptome sequencing. A GWAS followed by transcriptome analysis identified 29 differentially expressed genes associated with significant SNPs in B. napus. These genes regulate hypocotyl elongation by mediating flowering morphogenesis, circadian clock, hormone biosynthesis, or important metabolic signaling pathways. Among these genes, BnaC07g46770D negatively regulates hypocotyl elongation directly, as well as flowering time. Our results indicate that a joint GWAS and transcriptome analysis has significant potential for identifying the genes responsible for hypocotyl elongation; The extension of hypocotyl is a complex biological process regulated by a polygenic network.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Genome-Wide SNP Markers Based on SLAF-Seq Uncover Breeding Traces in Rapeseed (Brassica napus L.)
    Zhou, Qinghong
    Zhou, Can
    Zheng, Wei
    Mason, Annaliese S.
    Fan, Shuying
    Wu, Caijun
    Fu, Donghui
    Huang, Yingjin
    FRONTIERS IN PLANT SCIENCE, 2017, 8
  • [42] Genome-wide identification, phylogenetic and expression analysis of SMAX1-Like genes in rapeseed(Brassica napus L.)
    Hongli Yang
    Xiaokang Li
    Jinglin Liu
    Hongfang Liu
    Wei Hua
    Ming Zheng
    Oil Crop Science, 2018, 3 (02) : 71 - 85
  • [43] Genome-wide analysis of the auxin/indoleacetic acid (Aux/IAA) gene family in allotetraploid rapeseed (Brassica napus L.)
    Haitao Li
    Bo Wang
    Qinghua Zhang
    Jing Wang
    Graham J. King
    Kede Liu
    BMC Plant Biology, 17
  • [44] Genome-Wide Association Mapping Unravels the Genetic Control of Seed Vigor under Low-Temperature Conditions in Rapeseed (Brassica napus L.)
    Luo, Tao
    Zhang, Yuting
    Zhang, Chunni
    Nelson, Matthew N.
    Yuan, Jinzhan
    Guo, Liang
    Xu, Zhenghua
    PLANTS-BASEL, 2021, 10 (03): : 1 - 20
  • [45] Genome-wide identification and expression analysis of phenylalanine ammonia-lyase (PAL) family in rapeseed (Brassica napus L.)
    Zhang, Haiyan
    Zhang, Xiaohui
    Zhao, Huixia
    Hu, Jin
    Wang, Zhaoyang
    Yang, Guangsheng
    Zhou, Xianming
    Wan, Heping
    BMC PLANT BIOLOGY, 2023, 23 (01)
  • [46] Genome-wide analysis of the auxin/indoleacetic acid (Aux/IAA) gene family in allotetraploid rapeseed (Brassica napus L.)
    Li, Haitao
    Wang, Bo
    Zhang, Qinghua
    Wang, Jing
    King, Graham J.
    Liu, Kede
    BMC PLANT BIOLOGY, 2017, 17
  • [47] Genome-wide identification and expression analysis of phenylalanine ammonia-lyase (PAL) family in rapeseed (Brassica napus L.)
    Haiyan Zhang
    Xiaohui Zhang
    Huixia Zhao
    Jin Hu
    Zhaoyang Wang
    Guangsheng Yang
    Xianming Zhou
    Heping Wan
    BMC Plant Biology, 23
  • [48] Genome-wide association study for frost tolerance in canola (Brassica napus L.) under field conditions
    Danielle F. Wrucke
    Sujan Mamidi
    Mukhlesur Rahman
    Journal of Plant Biochemistry and Biotechnology, 2019, 28 : 211 - 222
  • [49] Genome-wide association study for frost tolerance in canola (Brassica napus L.) under field conditions
    Wrucke, Danielle F.
    Mamidi, Sujan
    Rahman, Mukhlesur
    JOURNAL OF PLANT BIOCHEMISTRY AND BIOTECHNOLOGY, 2019, 28 (02) : 211 - 222
  • [50] Genome-wide identification and functional analysis of oleosin genes in Brassica napus L.
    Chen, Kang
    Yin, Yongtai
    Liu, Si
    Guo, Zhenyi
    Zhang, Kai
    Liang, Yu
    Zhang, Lina
    Zhao, Weiguo
    Chao, Hongbo
    Li, Maoteng
    BMC PLANT BIOLOGY, 2019, 19 (1)