Joint genome-wide association and transcriptome sequencing reveals a complex polygenic network underlying hypocotyl elongation in rapeseed (Brassica napus L.)

被引:10
|
作者
Luo, Xiang [1 ]
Xue, Zhifei [1 ]
Ma, Chaozhi [1 ]
Hu, Kaining [1 ]
Zeng, Ziru [1 ]
Dou, Shengwei [1 ]
Tu, Jinxing [1 ]
Shen, Jinxiong [1 ]
Yi, Bin [1 ]
Fu, Tingdong [1 ]
机构
[1] Huazhong Agr Univ, Natl Ctr Rapeseed Improvement Wuhan, Natl Key Lab Crop Genet Improvement, Wuhan 430070, Peoples R China
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
基金
中国国家自然科学基金;
关键词
CIRCADIAN CLOCK; EXPRESSION ANALYSIS; DATA SETS; ARABIDOPSIS; GENE; TOLERANCE; PATHWAYS; TRAIT; ARCHITECTURE; SOFTWARE;
D O I
10.1038/srep41561
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Hypocotyl elongation is considered an important typical seedling trait contributing directly to an increase in and stabilization of the yield in Brassica napus, but its molecular genetic mechanism is poorly understood. In the present study, hypocotyl lengths of 210 lines were measured in an illuminated culture room. A genome-wide association study (GWAS) was performed with 23,435 single nucleotide polymorphisms (SNPs) for hypocotyl length. Three lines with long hypocotyl length and three lines with short hypocotyl length from one doubled haploid line (DH) population were used for transcriptome sequencing. A GWAS followed by transcriptome analysis identified 29 differentially expressed genes associated with significant SNPs in B. napus. These genes regulate hypocotyl elongation by mediating flowering morphogenesis, circadian clock, hormone biosynthesis, or important metabolic signaling pathways. Among these genes, BnaC07g46770D negatively regulates hypocotyl elongation directly, as well as flowering time. Our results indicate that a joint GWAS and transcriptome analysis has significant potential for identifying the genes responsible for hypocotyl elongation; The extension of hypocotyl is a complex biological process regulated by a polygenic network.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Joint genome-wide association and transcriptome sequencing reveals a complex polygenic network underlying hypocotyl elongation in rapeseed (Brassica napus L.)
    Xiang Luo
    Zhifei Xue
    Chaozhi Ma
    Kaining Hu
    Ziru Zeng
    Shengwei Dou
    Jinxing Tu
    Jinxiong Shen
    Bin Yi
    Tingdong Fu
    Scientific Reports, 7
  • [2] Genome-Wide Association Mapping Reveals the Genetic Control Underlying Branch Angle in Rapeseed (Brassica napus L.)
    Li, Hongge
    Zhang, Liping
    Hu, Jihong
    Zhang, Fugui
    Chen, Biyun
    Xu, Kun
    Gao, Guizhen
    Li, Hao
    Zhang, Tianyao
    Li, Zaiyun
    Wu, Xiaoming
    FRONTIERS IN PLANT SCIENCE, 2017, 8
  • [3] Genome-wide association study reveals the genetic architecture of flowering time in rapeseed (Brassica napus L.)
    Xu, Liping
    Hu, Kaining
    Zhang, Zhenqian
    Guan, Chunyun
    Chen, Song
    Hua, Wei
    Li, Jiana
    Wen, Jing
    Yi, Bin
    Shen, Jinxiong
    Ma, Chaozhi
    Tu, Jinxing
    Fu, Tingdong
    DNA RESEARCH, 2016, 23 (01) : 43 - 52
  • [4] Genome-Wide Association Study Reveals the Genetic Architecture Underlying Salt Tolerance-Related Traits in Rapeseed (Brassica napus L.)
    Wan, Heping
    Chen, Lunlin
    Guo, Jianbin
    Li, Qun
    Wen, Jing
    Yi, Bin
    Ma, Chaozhi
    Tu, Jinxing
    Fu, Tingdong
    Shen, Jinxiong
    FRONTIERS IN PLANT SCIENCE, 2017, 8
  • [5] Genome-wide association study for electrolyte leakage in rapeseed/canola (Brassica napus L.)
    Fiebelkorn, Danielle
    Horvath, David
    Rahman, Mukhlesur
    MOLECULAR BREEDING, 2018, 38 (11)
  • [6] Genome-wide association study for electrolyte leakage in rapeseed/canola (Brassica napus L.)
    Danielle Fiebelkorn
    David Horvath
    Mukhlesur Rahman
    Molecular Breeding, 2018, 38
  • [7] Genome-Wide Association Study Dissecting the Genetic Architecture Underlying the Branch Angle Trait in Rapeseed (Brassica napus L.)
    Sun, Chengming
    Wang, Benqi
    Wang, Xiaohua
    Hu, Kaining
    Li, Kaidi
    Li, Zhanyu
    Li, San
    Yan, Lei
    Guan, Chunyun
    Zhang, Jiefu
    Zhang, Zhenqian
    Chen, Song
    Wen, Jing
    Tu, Jinxing
    Shen, Jinxiong
    Fu, Tingdong
    Yi, Bin
    SCIENTIFIC REPORTS, 2016, 6
  • [8] Genome-Wide Association Study Dissecting the Genetic Architecture Underlying the Branch Angle Trait in Rapeseed (Brassica napus L.)
    Chengming Sun
    Benqi Wang
    Xiaohua Wang
    Kaining Hu
    Kaidi Li
    Zhanyu Li
    San Li
    Lei Yan
    Chunyun Guan
    Jiefu Zhang
    Zhenqian Zhang
    Song Chen
    Jing Wen
    Jinxing Tu
    Jinxiong Shen
    Tingdong Fu
    Bin Yi
    Scientific Reports, 6
  • [9] Genome-wide association study reveals genetic loci for seed density per silique in rapeseed (Brassica napus L.)
    Youjuan Quan
    Haidong Liu
    Kaixiang Li
    Liang Xu
    Zhigang Zhao
    Lu Xiao
    Yanmei Yao
    Dezhi Du
    Theoretical and Applied Genetics, 2025, 138 (4)
  • [10] Characterizing Variation of Branch Angle and Genome-Wide Association Mapping in Rapeseed (Brassica napus L.)
    Liu, Jia
    Wang, Wenxiang
    Mei, Desheng
    Wang, Hui
    Fu, Li
    Liu, Daoming
    Li, Yunchang
    Hui, Qiong
    FRONTIERS IN PLANT SCIENCE, 2016, 7