Universality of miscible-immiscible phase separation dynamics in two-component Bose-Einstein condensates

被引:11
|
作者
Jiang, Xunda [1 ,2 ]
Wu, Shuyuan [1 ,2 ]
Ye, Qinzhou [1 ,2 ,3 ]
Lee, Chaohong [1 ,2 ]
机构
[1] Sun Yat Sen Univ, Sch Phys & Astron, Lab Quantum Engn & Quantum Metrol, Zhuhai Campus, Zhuhai 519082, Peoples R China
[2] Sun Yat Sen Univ, Key Lab Optoelect Mat & Technol, Guangzhou Campus, Guangzhou 510275, Guangdong, Peoples R China
[3] South China Normal Univ, Sch Phys & Telecommun Engn, Guangdong Prov Key Lab Quantum Engn & Quantum Mat, Guangzhou 510006, Guangdong, Peoples R China
来源
NEW JOURNAL OF PHYSICS | 2019年 / 21卷 / 02期
基金
中国国家自然科学基金;
关键词
universal dynamics; quantum phase separation; Bose-Einstein condensate; critical exponent; SPONTANEOUS SYMMETRY-BREAKING; TRANSITION;
D O I
10.1088/1367-2630/ab00bf
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the non-equilibrium dynamics across the miscible-immiscible phase separation in a binary mixture of Bose-Einstein condensates. The excitation spectra reveal that the Landau critical velocity vanishes at the critical point, where the superfluidity spontaneously breaks down. We analytically extract the dynamical critical exponent z = 2 and static correlation length critical exponent v = 1/2 from the Landau critical velocity. Moreover, by simulating the real-time dynamics across the critical point, we find the average domain number and the average bifurcation delay show universal scaling laws with respect to the quench time. We then numerically extract the static correlation length critical exponent v = 1/2 and the dynamical critical exponent z = 2 according to Kibble-Zurek mechanism. The scaling exponents (v = 1/2, z = 2) in the phase separation driven by quenching the atom-atom interaction are different from the ones (v = 1/2, z = 1) in the phase separation driven by quenching the Rabi coupling strength (2009 Phys. Rev. Lett. 102 070401; 2011 Phys. Rev. Lett. 107 230402). Our study explores the connections between the spontaneous superfluidity breakdown and the spontaneous defect formation in the phase separation dynamics.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Fundamental Limit of Phase Coherence in Two-Component Bose-Einstein Condensates
    Li, Yifan
    Pawlowski, Krzysztof
    Decamps, Boris
    Colciaghi, Paolo
    Fadel, Matteo
    Treutlein, Philipp
    Zibold, Tilman
    [J]. PHYSICAL REVIEW LETTERS, 2020, 125 (12)
  • [32] Vortex phase diagram in rotating two-component Bose-Einstein condensates
    Kasamatsu, K
    Tsubota, M
    Ueda, M
    [J]. PHYSICAL REVIEW LETTERS, 2003, 91 (15)
  • [33] Structure of vortices in two-component Bose-Einstein condensates
    Jezek, D.M.
    Capuzzi, P.
    Cataldo, H.M.
    [J]. Physical Review A. Atomic, Molecular, and Optical Physics, 2001, 64 (02): : 1 - 023605
  • [34] Boojums in rotating two-component Bose-Einstein condensates
    Takeuchi, Hiromitsu
    Tsubota, Makoto
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2006, 75 (06)
  • [35] Stability of Two-Component Bose-Einstein Condensates in Traps
    Hirofumi Morise
    Miki Wadati
    [J]. Journal of Low Temperature Physics, 2000, 121 : 0 - 0
  • [36] Structure of vortices in two-component Bose-Einstein condensates
    Jezek, DM
    Capuzzi, P
    Cataldo, HM
    [J]. PHYSICAL REVIEW A, 2001, 64 (02): : 4
  • [37] Stable skyrmions in two-component Bose-Einstein condensates
    Battye, RA
    Cooper, NR
    Sutcliffe, PM
    [J]. PHYSICAL REVIEW LETTERS, 2002, 88 (08) : 4 - 080401
  • [38] Stability of two-component Bose-Einstein condensates in traps
    Morise, H
    Wadati, M
    [J]. JOURNAL OF LOW TEMPERATURE PHYSICS, 2000, 121 (5-6) : 257 - 262
  • [39] Topological objects in two-component Bose-Einstein condensates
    Cho, YM
    Khim, H
    Zhang, PM
    [J]. PHYSICAL REVIEW A, 2005, 72 (06):
  • [40] Superposition solitons in two-component Bose-Einstein condensates
    王晓敏
    李秋艳
    李再东
    [J]. Chinese Physics B, 2013, 22 (05) : 172 - 178