Universality of miscible-immiscible phase separation dynamics in two-component Bose-Einstein condensates

被引:11
|
作者
Jiang, Xunda [1 ,2 ]
Wu, Shuyuan [1 ,2 ]
Ye, Qinzhou [1 ,2 ,3 ]
Lee, Chaohong [1 ,2 ]
机构
[1] Sun Yat Sen Univ, Sch Phys & Astron, Lab Quantum Engn & Quantum Metrol, Zhuhai Campus, Zhuhai 519082, Peoples R China
[2] Sun Yat Sen Univ, Key Lab Optoelect Mat & Technol, Guangzhou Campus, Guangzhou 510275, Guangdong, Peoples R China
[3] South China Normal Univ, Sch Phys & Telecommun Engn, Guangdong Prov Key Lab Quantum Engn & Quantum Mat, Guangzhou 510006, Guangdong, Peoples R China
来源
NEW JOURNAL OF PHYSICS | 2019年 / 21卷 / 02期
基金
中国国家自然科学基金;
关键词
universal dynamics; quantum phase separation; Bose-Einstein condensate; critical exponent; SPONTANEOUS SYMMETRY-BREAKING; TRANSITION;
D O I
10.1088/1367-2630/ab00bf
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the non-equilibrium dynamics across the miscible-immiscible phase separation in a binary mixture of Bose-Einstein condensates. The excitation spectra reveal that the Landau critical velocity vanishes at the critical point, where the superfluidity spontaneously breaks down. We analytically extract the dynamical critical exponent z = 2 and static correlation length critical exponent v = 1/2 from the Landau critical velocity. Moreover, by simulating the real-time dynamics across the critical point, we find the average domain number and the average bifurcation delay show universal scaling laws with respect to the quench time. We then numerically extract the static correlation length critical exponent v = 1/2 and the dynamical critical exponent z = 2 according to Kibble-Zurek mechanism. The scaling exponents (v = 1/2, z = 2) in the phase separation driven by quenching the atom-atom interaction are different from the ones (v = 1/2, z = 1) in the phase separation driven by quenching the Rabi coupling strength (2009 Phys. Rev. Lett. 102 070401; 2011 Phys. Rev. Lett. 107 230402). Our study explores the connections between the spontaneous superfluidity breakdown and the spontaneous defect formation in the phase separation dynamics.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Universality in nonlinear passage through the miscible-immiscible phase transition in two component Bose-Einstein condensates
    Jiang, Xunda
    Ji, Yikai
    Liu, Bin
    Li, Feng
    Qin, Xizhou
    Li, Yongyao
    Lee, Chaohong
    [J]. PHYSICS LETTERS A, 2023, 467
  • [2] Phase separation and dynamics of two-component Bose-Einstein condensates
    Navarro, R.
    Carretero-Gonzalez, R.
    Kevrekidis, P. G.
    [J]. PHYSICAL REVIEW A, 2009, 80 (02):
  • [3] Phase separation and dynamics of two-component Bose-Einstein condensates
    Lee, Kean Loon
    Jorgensen, Nils B.
    Liu, I-Kang
    Wacker, Lars
    Arlt, Jan J.
    Proukakis, Nick P.
    [J]. PHYSICAL REVIEW A, 2016, 94 (01)
  • [4] Miscible-immiscible quantum phase transition in coupled two-component Bose-Einstein condensates in one-dimensional optical lattices
    Zhan, Fei
    Sabbatini, Jacopo
    Davis, Matthew J.
    McCulloch, Ian P.
    [J]. PHYSICAL REVIEW A, 2014, 90 (02):
  • [5] Phase separation of two-component Bose-Einstein condensates
    Liu, Zuhan
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (10)
  • [6] Nonequilibrium dynamics induced by miscible-immiscible transition in binary Bose-Einstein condensates
    Eto, Yujiro
    Takahashi, Masahiro
    Kunimi, Masaya
    Saito, Hiroki
    Hirano, Takuya
    [J]. NEW JOURNAL OF PHYSICS, 2016, 18
  • [7] Countersuperflow instability in miscible two-component Bose-Einstein condensates
    Ishino, Shungo
    Tsubota, Makoto
    Takeuchi, Hiromitsu
    [J]. PHYSICAL REVIEW A, 2011, 83 (06):
  • [8] Kelvin wave in miscible two-component Bose-Einstein condensates
    Kasamatsu, Kenichi
    Okada, Maki
    Takeuchi, Hiromitsu
    [J]. PHYSICAL REVIEW A, 2023, 107 (01)
  • [9] Phase separation of two-component Bose-Einstein condensates with monopolar interaction
    Zhu, Long
    Li, Jinbin
    [J]. MODERN PHYSICS LETTERS B, 2017, 31 (23):
  • [10] Entanglement dynamics in two-component Bose-Einstein condensates
    Hao Ya-Jiang
    Liang Jiu-Qing
    [J]. CHINESE PHYSICS, 2006, 15 (06): : 1161 - 1171