Thermal Conductivity Depth Profiling of Hardened Solids using Infrared Photothermal Radiometry Technique

被引:0
|
作者
Liu, Liwang [1 ]
Xiong, Jichuan [1 ,2 ]
Wang, Chinhua [3 ]
Glorieux, Christ [1 ,2 ]
机构
[1] Katholieke Univ Leuven, Dept Nat Kunde Sterrenkunde, Lab Akoestiek Therm Fys, Celestijnenlaan 200D, B-3001 Louvain, Belgium
[2] Katholieke Univ Leuven, dept Natuuekunde & Sterrenkunde, Lab Voor Akoestiek & Thermische Fysica, B-3001 Heverlee, Belgium
[3] Soochow Univ, Inst Modern Opt Technol, Key Lab Modern Opt Technol Jiangsu Prov, Suzhou 215006, Peoples R China
基金
中国国家自然科学基金;
关键词
RECONSTRUCTION; DIFFUSIVITY;
D O I
暂无
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Being very sensitive to heterogeneities, the thermal conductivity of materials is a quite appropriate thermophysical quantity to probe their microstructure. In this paper, we focus on hardened steel samples, in which a depth profile of varying microstructure is induced by a hardening treatment. An artificial neural network recognition approach is used to extract the thermal conductivity depth profile from infrared photothermal radiometry (PTR) signals obtained in a non-contact way on cylindrical steel rods. The quality of the reconstructed thermal conductivity depth profile is confirmed by a good correspondence between the signals calculated a posteriori from the profile and the experimental data that were fed to the neural network. The results confirm the expected anti-correlation between the thermal conductivity and the hardness, which was determined from a classical indentation procedure at different depths.
引用
收藏
页码:243 / 252
页数:10
相关论文
共 50 条
  • [31] Influence of Rolling on the Thermal Diffusivity of Metal Alloys by Photothermal Infrared Radiometry
    I. Delgadillo-Holtfort
    M. Chirtoc
    J. Gibkes
    B. K. Bein
    J. Pelzl
    [J]. International Journal of Thermophysics, 2014, 35 : 2308 - 2315
  • [32] Layered polymers: Description of their thermal stabilisation by means of photothermal infrared radiometry
    Bahners, T.
    Schlosser, U.
    Gebert, B.
    Schollmeyer, E.
    [J]. Textilveredlung, 1999, 34 (1-2): : 35 - 40
  • [33] DEPTH PROFILING OF LASER-HEATED CHROMOPHORES IN BIOLOGICAL TISSUES BY PULSED PHOTOTHERMAL RADIOMETRY
    MILNER, TE
    GOODMAN, DM
    TANENBAUM, BS
    NELSON, JS
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1995, 12 (07) : 1479 - 1488
  • [34] Influence of Rolling on the Thermal Diffusivity of Metal Alloys by Photothermal Infrared Radiometry
    Delgadillo-Holtfort, I.
    Chirtoc, M.
    Gibkes, J.
    Bein, B. K.
    Pelzl, J.
    [J]. INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2014, 35 (12) : 2308 - 2315
  • [35] Photothermal depth profiling by Thermal Wave Backscattering Theory
    Li Voti, R
    Liakhou, GL
    Paoloni, S
    Sibilia, C
    Bertolotti, M
    [J]. ANALYTICAL SCIENCES, 2001, 17 : S414 - S416
  • [36] Spatially localized measurement of thermal conductivity using a hybrid photothermal technique
    Hua, Zilong
    Ban, Heng
    Khafizov, Marat
    Schley, Robert
    Kennedy, Rory
    Hurley, David H.
    [J]. JOURNAL OF APPLIED PHYSICS, 2012, 111 (10)
  • [37] NONCONTACT MEASUREMENT OF THERMAL-CONDUCTIVITY OF EPOXY BONDS BY PULSED PHOTOTHERMAL RADIOMETRY
    LEUNG, WP
    TAM, AC
    [J]. APPLIED PHYSICS LETTERS, 1987, 51 (25) : 2085 - 2087
  • [38] NONDESTRUCTIVE TESTING OF POLYMERS USING PHOTOTHERMAL METROLOGY .1. PHOTOTHERMAL INFRARED RADIOMETRY
    EICKMEIER, A
    BAHNERS, T
    SCHOLLMEYER, E
    [J]. ANGEWANDTE MAKROMOLEKULARE CHEMIE, 1991, 185 : 239 - 248
  • [39] Sizing the depth and width of ideal delaminations using modulated photothermal radiometry
    Salazar, Agustin
    Mendioroz, Arantza
    [J]. JOURNAL OF APPLIED PHYSICS, 2022, 131 (08)
  • [40] Simultaneous measurement of thermal diffusivity and optical absorption coefficient using photothermal radiometry. II Multilayered solids
    Salazar, Agustin
    Fuente, Raquel
    Apinaniz, Estibaliz
    Mendioroz, Arantza
    Celorrio, R.
    [J]. JOURNAL OF APPLIED PHYSICS, 2011, 110 (03)