comorbidity;
severity of disease;
benchmarking;
quality measurement;
quality of care;
health outcome assessment;
report cards;
D O I:
10.1111/j.1475-6773.2005.00419.x
中图分类号:
R19 [保健组织与事业(卫生事业管理)];
学科分类号:
摘要:
Context. Comorbidity measures are designed to exclude complications when they map International Classification of Diseases (ICD-9-CM) codes to diagnostic categories. The use of data fields that indicates whether each secondary diagnosis was present at the time of hospital admission may lead to the more accurate identification of preexisting conditions. Objective. To examine the rate of misclassification of ICD-9-CM codes into diagnostic categories by the Dartmouth-Manitoba adaptation of the Charlson index and by the Elixhauser comorbidity algorithm. Data Source. Analysis of 178,838 patients in the California State Inpatient Database (CA SID) admitted in 2000 for one of seven major medical and surgical conditions. The CA SID includes a condition present at admission (CPAA) modifier for each ICD-9-CM code. Study Design. The Dartmouth/Charlson index and the Elixhauser comorbidity measure were used to map the ICD-9-CM codes into diagnostic categories for patients in each study population. We calculated the misclassification rate for each mapping algorithm, using information from the CPAA as the "gold standard." Principal Findings. The Dartmouth/Charlson index underestimated the prevalence of hemiplegia/paraplegia by 70 percent, cerebrovascular disease by 70 percent, myocardial infarction by 65 percent, congestive heart failure (CHF) by 45 percent, and peptic ulcer disease by 34 percent. The Elixhauser algorithm misclassified complications as preexisting conditions for 43 percent of the coagulopathies, 25 percent of the fluid and electrolyte disorders, 18 percent of the cardiac arrhythmias, 18 percent of the cardiac arrhythmias, and 9 percent of the cases of CHF. Conclusion. Adding the CPAA modifier to administrative data would significantly enhance the ability of the Dartmouth/Charlson index and of the Elixhauser algorithm to map ICD-9-CM codes to diagnostic categories accurately.
机构:
Baylor Coll Med, Dept Med, Div Gastroenterol & Hepatol, Houston, TX 77030 USA
Houston Ctr Qual Care & Utilizat Studies, Sect Hlth Serv Res, Houston, TX USABaylor Coll Med, Dept Med, Div Gastroenterol & Hepatol, Houston, TX 77030 USA
Thirumurthi, Selvi
Chowdhury, Reezwana
论文数: 0引用数: 0
h-index: 0
机构:
Baylor Coll Med, Dept Med, Div Gastroenterol & Hepatol, Houston, TX 77030 USABaylor Coll Med, Dept Med, Div Gastroenterol & Hepatol, Houston, TX 77030 USA
Chowdhury, Reezwana
Richardson, Peter
论文数: 0引用数: 0
h-index: 0
机构:
Michael E DeBakey VA Med Ctr, Gastrointestinal Outcomes Geriatr GO GERI Unit, Houston, TX 77030 USA
Houston Ctr Qual Care & Utilizat Studies, Sect Hlth Serv Res, Houston, TX USABaylor Coll Med, Dept Med, Div Gastroenterol & Hepatol, Houston, TX 77030 USA
Richardson, Peter
Abraham, Neena S.
论文数: 0引用数: 0
h-index: 0
机构:
Baylor Coll Med, Dept Med, Div Gastroenterol & Hepatol, Houston, TX 77030 USA
Michael E DeBakey VA Med Ctr, Sect Digest Dis, Houston, TX 77030 USA
Michael E DeBakey VA Med Ctr, Gastrointestinal Outcomes Geriatr GO GERI Unit, Houston, TX 77030 USA
Houston Ctr Qual Care & Utilizat Studies, Sect Hlth Serv Res, Houston, TX USABaylor Coll Med, Dept Med, Div Gastroenterol & Hepatol, Houston, TX 77030 USA
机构:
Columbia Univ, Med Ctr, New York, NY 10032 USA
NYCLIX, New York, NY 10032 USAColumbia Univ, Med Ctr, New York, NY 10032 USA
Vaidya, Sandip R.
Shapiro, Jason S.
论文数: 0引用数: 0
h-index: 0
机构:
NYCLIX, New York, NY 10032 USAColumbia Univ, Med Ctr, New York, NY 10032 USA
Shapiro, Jason S.
Lovett, Paris B.
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ, Med Ctr, New York, NY 10032 USA
NewYork Presbyterian Hosp, New York, NY 10032 USAColumbia Univ, Med Ctr, New York, NY 10032 USA
Lovett, Paris B.
Kuperman, Gilad J.
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ, Med Ctr, New York, NY 10032 USA
NYCLIX, New York, NY 10032 USA
NewYork Presbyterian Hosp, New York, NY 10032 USAColumbia Univ, Med Ctr, New York, NY 10032 USA