The depth spectrum of negacyclic codes over Z4

被引:6
|
作者
Kai, Xiaoshan [1 ]
Wang, Lingrong
Zhu, Shixin
机构
[1] Hefei Univ Technol, Sch Math, Hefei 230009, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Negacyclic code; Depth spectrum; Residue code; Torsion code; LENGTH; 2(S);
D O I
10.1016/j.disc.2016.09.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The depth spectrum of any negacyclic code over Z(4) of even length is completely determined by using its residue and torsion codes. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:345 / 350
页数:6
相关论文
共 50 条
  • [1] Negacyclic and cyclic codes over Z4
    Wolfmann, J
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (07) : 2527 - 2532
  • [2] Algebraic decoding of negacyclic codes over Z4
    Byrne, Eimear
    Greferath, Marcus
    Pernas, Jaume
    Zumbraegel, Jens
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2013, 66 (1-3) : 3 - 16
  • [3] Negacyclic codes over Z4 of even length
    Blackford, T
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (06) : 1417 - 1424
  • [4] Codes over Z4 + νZ4
    Bandi, Rama Krishna
    Bhaintwal, Maheshanand
    [J]. 2014 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2014, : 422 - 427
  • [5] A mass formula for negacyclic codes of length 2k and some good negacyclic codes over Z4 + uZ4
    Bandi, Rama Krishna
    Bhaintwal, Maheshanand
    Aydin, Nuh
    [J]. CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2017, 9 (02): : 241 - 272
  • [6] Codes over Z4
    Helleseth, T
    [J]. COMPUTATIONAL DISCRETE MATHEMATICS: ADVANCED LECTURES, 2001, 2122 : 47 - 55
  • [7] Greedy Codes over Z4
    Guenda, Kenza
    Gulliver, T. Aaron
    Sheikholeslam, S. Arash
    [J]. 2012 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2012,
  • [8] On LCD codes over Z4
    Bhowmick, Sanjit
    Bagchi, Satya
    Bandi, Ramakrishna
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024,
  • [9] Shadow codes over Z4
    Dougherty, ST
    Harada, M
    Solé, P
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2001, 7 (04) : 507 - 529
  • [10] AN EXPLICIT REPRESENTATION AND ENUMERATION FOR NEGACYCLIC CODES OF LENGTH 2kn OVER Z4 + uZ4
    Cao, Yuan
    Cao, Yonglin
    Dinh, Hai Q.
    Bandi, Ramakrishna
    Fu, Fang-Wei
    [J]. ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2021, 15 (02) : 291 - 309