Discovery of Differential Equations Using Probabilistic Grammars

被引:1
|
作者
Gec, Bostjan [1 ,2 ]
Omejc, Nina [1 ,2 ]
Brence, Jure [1 ,2 ]
Dzeroski, Saso [1 ,2 ]
Todorovski, Ljupco [1 ,3 ]
机构
[1] Jozef Stefan Inst, Dept Knowledge Technol, Ljubljana, Slovenia
[2] Jozef Stefan Int Postgrad Sch, Ljubljana, Slovenia
[3] Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
来源
DISCOVERY SCIENCE (DS 2022) | 2022年 / 13601卷
关键词
Partial observability; Dynamical systems; System identification; Equation discovery; Symbolic regression; Probabilistic context-free grammars; Ordinary differential equations;
D O I
10.1007/978-3-031-18840-4_2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Ordinary differential equations (ODEs) are a widely used formalism for mathematical modeling of dynamical systems, a task omnipresent in many scientific domains. The paper introduces a novel method for inferring ODEs from data. It extends ProGED, a method for equation discovery that employs probabilistic context-free grammars for constraining the space of candidate equations. The proposed method can discover ODEs from partial observations of dynamical systems, where only a subset of state variables can be observed. The new method's empirical evaluation shows it can reconstruct the ODEs of the well-known Van der Pol oscillator from synthetic simulation data. In terms of reconstruction performance, improved ProGED compares favorably to state-of-the-art methods for inferring ODEs from data.
引用
收藏
页码:22 / 31
页数:10
相关论文
共 50 条
  • [21] Probabilistic hyperedge replacement grammars
    Mosbah, M
    THEORETICAL COMPUTER SCIENCE, 1996, 159 (01) : 81 - 102
  • [22] Short-term probabilistic forecasting of wind speed using stochastic differential equations
    Iversen, Emil B.
    Morales, Juan M.
    Moller, Jan K.
    Madsen, Henrik
    INTERNATIONAL JOURNAL OF FORECASTING, 2016, 32 (03) : 981 - 990
  • [23] Discovery of differential equations from numerical data
    Niijima, K
    Uchida, H
    Hirowatari, E
    Arikawa, S
    DISCOVERY SCIENCE, 1998, 1532 : 364 - 374
  • [24] A syntactic approach to robot imitation learning using probabilistic activity grammars
    Lee, Kyuhwa
    Su, Yanyu
    Kim, Tae-Kyun
    Demiris, Yiannis
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2013, 61 (12) : 1323 - 1334
  • [25] Differential equations on closed subsets of a probabilistic normed space
    Jong Kyu Kim
    Byoung Jae Jin
    Korean Journal of Computational & Applied Mathematics, 1998, 5 (1): : 223 - 233
  • [26] Probabilistic approach to a class of semilinear partial differential equations
    Le Gall, Jean-Francois
    PERSPECTIVES IN NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS: IN HONOR OF HAIM BREZIS, 2007, 446 : 255 - 272
  • [27] Probabilistic Solutions to Differential Equations and their Application to Riemannian Statistics
    Hennig, Philipp
    Hauberg, Soren
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 33, 2014, 33 : 347 - 355
  • [28] Probabilistic models for stochastic elliptic partial differential equations
    Grigoriu, Mircea
    JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (22) : 8406 - 8429
  • [29] Differential equations on closed subsets of a probabilistic normed space
    Department of Mathematics, Kyungnam University, Masan, Kyungnam 631-701, Korea, Republic of
    J. Appl. Math. Comp., 1 (223-233):
  • [30] REMARK ON DISCOVERY ALGORITHMS FOR GRAMMARS
    SHAMIR, E
    INFORMATION AND CONTROL, 1962, 5 (03): : 246 - &