Discovery of Differential Equations Using Probabilistic Grammars
被引:1
|
作者:
Gec, Bostjan
论文数: 0引用数: 0
h-index: 0
机构:
Jozef Stefan Inst, Dept Knowledge Technol, Ljubljana, Slovenia
Jozef Stefan Int Postgrad Sch, Ljubljana, SloveniaJozef Stefan Inst, Dept Knowledge Technol, Ljubljana, Slovenia
Gec, Bostjan
[1
,2
]
Omejc, Nina
论文数: 0引用数: 0
h-index: 0
机构:
Jozef Stefan Inst, Dept Knowledge Technol, Ljubljana, Slovenia
Jozef Stefan Int Postgrad Sch, Ljubljana, SloveniaJozef Stefan Inst, Dept Knowledge Technol, Ljubljana, Slovenia
Omejc, Nina
[1
,2
]
Brence, Jure
论文数: 0引用数: 0
h-index: 0
机构:
Jozef Stefan Inst, Dept Knowledge Technol, Ljubljana, Slovenia
Jozef Stefan Int Postgrad Sch, Ljubljana, SloveniaJozef Stefan Inst, Dept Knowledge Technol, Ljubljana, Slovenia
Brence, Jure
[1
,2
]
Dzeroski, Saso
论文数: 0引用数: 0
h-index: 0
机构:
Jozef Stefan Inst, Dept Knowledge Technol, Ljubljana, Slovenia
Jozef Stefan Int Postgrad Sch, Ljubljana, SloveniaJozef Stefan Inst, Dept Knowledge Technol, Ljubljana, Slovenia
Dzeroski, Saso
[1
,2
]
Todorovski, Ljupco
论文数: 0引用数: 0
h-index: 0
机构:
Jozef Stefan Inst, Dept Knowledge Technol, Ljubljana, Slovenia
Univ Ljubljana, Fac Math & Phys, Ljubljana, SloveniaJozef Stefan Inst, Dept Knowledge Technol, Ljubljana, Slovenia
Todorovski, Ljupco
[1
,3
]
机构:
[1] Jozef Stefan Inst, Dept Knowledge Technol, Ljubljana, Slovenia
[2] Jozef Stefan Int Postgrad Sch, Ljubljana, Slovenia
[3] Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
Ordinary differential equations (ODEs) are a widely used formalism for mathematical modeling of dynamical systems, a task omnipresent in many scientific domains. The paper introduces a novel method for inferring ODEs from data. It extends ProGED, a method for equation discovery that employs probabilistic context-free grammars for constraining the space of candidate equations. The proposed method can discover ODEs from partial observations of dynamical systems, where only a subset of state variables can be observed. The new method's empirical evaluation shows it can reconstruct the ODEs of the well-known Van der Pol oscillator from synthetic simulation data. In terms of reconstruction performance, improved ProGED compares favorably to state-of-the-art methods for inferring ODEs from data.
机构:
Jozef Stefan Inst, Dept Knowledge Technol, Jamova Cesta 39, Ljubljana 1000, Slovenia
Jozef Stefan Int Postgrad Sch, Jamova Cesta 39, Ljubljana 1000, SloveniaJozef Stefan Inst, Dept Knowledge Technol, Jamova Cesta 39, Ljubljana 1000, Slovenia
Brence, Jure
Todorovski, Ljupco
论文数: 0引用数: 0
h-index: 0
机构:
Jozef Stefan Inst, Dept Knowledge Technol, Jamova Cesta 39, Ljubljana 1000, Slovenia
Univ Ljubljana, Fac Publ Adm, Gosarjeva Ul 5, Ljubljana 1000, SloveniaJozef Stefan Inst, Dept Knowledge Technol, Jamova Cesta 39, Ljubljana 1000, Slovenia
Todorovski, Ljupco
Dzeroski, Sago
论文数: 0引用数: 0
h-index: 0
机构:
Jozef Stefan Inst, Dept Knowledge Technol, Jamova Cesta 39, Ljubljana 1000, Slovenia
Jozef Stefan Int Postgrad Sch, Jamova Cesta 39, Ljubljana 1000, SloveniaJozef Stefan Inst, Dept Knowledge Technol, Jamova Cesta 39, Ljubljana 1000, Slovenia
机构:
Jozef Stefan Inst, Dept Knowledge Technol, Jamova Cesta 39, Ljubljana 1000, Slovenia
Jozef Stefan Int Postgrad Sch, Jamova Cesta 39, Ljubljana 1000, SloveniaJozef Stefan Inst, Dept Knowledge Technol, Jamova Cesta 39, Ljubljana 1000, Slovenia
Brence, Jure
Dzeroski, Saso
论文数: 0引用数: 0
h-index: 0
机构:
Jozef Stefan Inst, Dept Knowledge Technol, Jamova Cesta 39, Ljubljana 1000, Slovenia
Jozef Stefan Int Postgrad Sch, Jamova Cesta 39, Ljubljana 1000, SloveniaJozef Stefan Inst, Dept Knowledge Technol, Jamova Cesta 39, Ljubljana 1000, Slovenia
Dzeroski, Saso
Todorovski, Ljupco
论文数: 0引用数: 0
h-index: 0
机构:
Jozef Stefan Inst, Dept Knowledge Technol, Jamova Cesta 39, Ljubljana 1000, Slovenia
Univ Ljubljana, Fac Math & Phys, Dept Math, Jadranska 21, Ljubljana 1000, SloveniaJozef Stefan Inst, Dept Knowledge Technol, Jamova Cesta 39, Ljubljana 1000, Slovenia