Fast Algorithm for Choosing Blur Coefficients in Multidimensional Kernel Probability Density Estimates

被引:3
|
作者
Lapko, A. V. [1 ,2 ]
Lapko, V. A. [1 ,2 ]
机构
[1] Russian Acad Sci, Siberian Branch, Inst Computat Modeling, Krasnoyarsk, Russia
[2] Reshetnev Siberian State Univ Sci & Technol, Krasnoyarsk, Russia
基金
俄罗斯基础研究基金会;
关键词
non-parametric estimation of multidimensional probability density; choice of blur coefficients; Rosenblatt-Parzen estimate; fast optimization algorithm; asymptotic properties; multidimensional data analysis; BANDWIDTH SELECTION; CROSS-VALIDATION;
D O I
10.1007/s11018-019-01536-x
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A method is proposed for quickly choosing the blur coefficients of kernel functions in a non-parametric estimate of a multidimensional probability density of Rosenblatt-Parzen type. The technique is based on the analysis of the asymptotic properties of a multidimensional probability density estimate. The properties of the fast algorithm for choosing the blur coefficients of a kernel probability density estimate are investigated.
引用
收藏
页码:979 / 986
页数:8
相关论文
共 44 条
  • [31] Choosing the optimal algorithm parameters in reconstruction of probability density function using the empirical data
    Inst Problem Upravleniya RAN, Moscow, Russia
    Avt Telemekh, 10 (95-111):
  • [32] A Fast Foreground Object Detection Algorithm Using Kernel Density Estimation
    Li, Dawei
    Xu, Lihong
    Goodman, Erik
    PROCEEDINGS OF 2012 IEEE 11TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP) VOLS 1-3, 2012, : 703 - +
  • [33] INTRINSIC COMPOUND KERNEL ESTIMATES FOR THE TRANSITION PROBABILITY DENSITY OF LEVY-TYPE PROCESSES AND THEIR APPLICATIONS
    Knopova, Victoria
    Kulik, Aleksei
    PROBABILITY AND MATHEMATICAL STATISTICS-POLAND, 2017, 37 (01): : 53 - 100
  • [34] NECESSARY AND SUFFICIENT CONDITIONS OF ALMOST SURE CONVERGENCE OF KERNEL ESTIMATES OF PROBABILITY DENSITY AND ITS DERIVATIVES
    IOFFE, MO
    KATKOVNIK, VY
    AUTOMATION AND REMOTE CONTROL, 1986, 47 (12) : 1632 - 1641
  • [35] SYNTHESIS OF OPTIMAL KERNEL ESTIMATES OF PROBABILITY DENSITY AND ITS DERIVATIVES IN THE CASE OF OBSERVATION ERRORS.
    Katkovnik, V.Ya.
    Poletaeva, N.G.
    Kibernetika i Vychislitel'naya Tekhnika, 1985, (67): : 11 - 29
  • [36] Conditional Optimization of the Functional Computational Kernel Algorithm for Approximating the Probability Density on the Basis of a Given Sample
    Bulgakova, T. E.
    Voytishek, A. V.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2021, 61 (09) : 1401 - 1415
  • [37] Conditional Optimization of the Functional Computational Kernel Algorithm for Approximating the Probability Density on the Basis of a Given Sample
    T. E. Bulgakova
    A. V. Voytishek
    Computational Mathematics and Mathematical Physics, 2021, 61 : 1401 - 1415
  • [38] Fast kernel density estimator based image thresholding algorithm for small target images
    Wang, Jun
    Wang, Shi-Tong
    Deng, Zhao-Hong
    Ying, Wen-Hao
    Zidonghua Xuebao/Acta Automatica Sinica, 2012, 38 (10): : 1679 - 1689
  • [39] Nonparametric Algorithm of Identification of Classes Corresponding to Single-mode Fragments of the Probability Density of Multidimensional Random Variables
    A. V. Lapko
    V. A. Lapko
    S. T. Im
    V. P. Tuboltsev
    V. A. Avdeenok
    Optoelectronics, Instrumentation and Data Processing, 2019, 55 : 230 - 236
  • [40] Nonparametric Algorithm of Identification of Classes Corresponding to Single-mode Fragments of the Probability Density of Multidimensional Random Variables
    Lapko, A. V.
    Lapko, V. A.
    Im, S. T.
    Tuboltsev, V. P.
    Avdeenok, V. A.
    OPTOELECTRONICS INSTRUMENTATION AND DATA PROCESSING, 2019, 55 (03) : 230 - 236