Uniform Nano-Sn/C Composite Anodes for Lithium Ion Batteries

被引:528
|
作者
Xu, Yunhua [1 ]
Liu, Qing [2 ]
Zhu, Yujie [1 ]
Liu, Yihang [1 ]
Langrock, Alex [1 ]
Zachariah, Michael R. [2 ]
Wang, Chunsheng [1 ]
机构
[1] Univ Maryland, Dept Chem & Biomol Engn, College Pk, MD 20742 USA
[2] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA
关键词
Tin nanoparticle; aerosol spray pyrolysis; anode; energy storage; lithium-ion battery; HOLLOW CARBON; ALLOY ANODE; C COMPOSITE; TIN; NANOPARTICLES; INSERTION; GRAPHENE;
D O I
10.1021/nl303823k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nano-Sn/C composites are ideal anode materials for high energy and power density Li-ion batteries. However, because of the low melting point of Sn and the tendency of grain growth, especially during high temperature carbonization, it has been a significant challenge to create well-dispersed ultrasmall Sn nanoparticles within a carbon matrix. In this paper, we demonstrate an aerosol spray pyrolysis technique, as a facile and scalable method, to synthesize a nano-Sn/C composite with uniformly dispersed 10 nm nano-Sn within a spherical carbon matrix. The discharge capacity of nano-Sn/C composite sphere anodes maintains the initial capacity of 710 mAh/g after 130 cycles at 0.25 C. The nano-Sn/C composite sphere anodes can provide similar to 600 mAh/g even at a high rate of 20 C. To the best of our knowledge, such high rate performance for Sn anodes has not been reported previously. The exceptional performance of the nano-Sn/C composite is attributed to the unique nano-Sn/C structure: (1) carbon matrix offers mechanical support to accommodate the stress associated with the large volume change of nano-Sn, thus alleviating pulverization; (2) the carbon matrix prevents Sn nanoparticle agglomeration upon prolonged cycling; and (3) carbon network provides continuous path for Li ions and electrons inside the nano-Sn/C composite spheres.
引用
收藏
页码:470 / 474
页数:5
相关论文
共 50 条
  • [21] Microwave Derived Facile Approach to Sn/Graphene Composite Anodes for, Lithium-Ion Batteries
    Beck, Faith R.
    Epur, Rigved
    Hong, Daeho
    Manivannan, Ayyakkannu
    Kumta, Prashant N.
    [J]. ELECTROCHIMICA ACTA, 2014, 127 : 299 - 306
  • [22] Nanophase Sn composite anodes for Li-ion batteries
    Behl, WK
    Foster, D
    Read, J
    Wolfenstine, J
    [J]. JOURNAL OF THE INDIAN CHEMICAL SOCIETY, 2005, 82 (12) : 1119 - 1121
  • [23] Uniform Nano-SnO2/C Composite Anodes from Coal Tar Pitch for Sodium-Ion Batteries
    Li, Yaoyu
    Liu, Ruifeng
    Wang, Chunlei
    Zhou, Ying
    [J]. ENERGY & FUELS, 2021, 35 (10) : 9029 - 9037
  • [24] Nanoengineered Sn-TiC-C composite anode for lithium ion batteries
    Yoon, Sukeun
    Manthiram, Arumugam
    [J]. JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (02) : 236 - 239
  • [25] Nanostructured SnO2/C composite anodes in lithium-ion batteries
    Hsieh, Chien-Te
    Chen, Jin-Ming
    Huang, Hsiu-Wen
    [J]. International Journal of Nanoscience, Vol 2, Nos 4 and 5, 2003, 2 (4-5): : 299 - 306
  • [26] Reactivating Li2O with Nano-Sn to Achieve Ultrahigh Initial Coulombic Efficiency SiO Anodes for Li-Ion Batteries
    Fu, Rusheng
    Wu, Yongkang
    Fan, Chongzhao
    Long, Zuxin
    Shao, Guangjie
    Liu, Zhaoping
    [J]. CHEMSUSCHEM, 2019, 12 (14) : 3377 - 3382
  • [27] Silicon and carbon based composite anodes for lithium ion batteries
    Datta, Moni Kanchan
    Kumta, Prashant N.
    [J]. JOURNAL OF POWER SOURCES, 2006, 158 (01) : 557 - 563
  • [28] Composite anodes for lithium-ion batteries: status and trends
    Mauger, Alain
    Xie, Haiming
    Julien, Christian M.
    [J]. AIMS MATERIALS SCIENCE, 2016, 3 (03) : 1054 - 1106
  • [29] Si-Mn composite anodes for lithium ion batteries
    Zuo, PJ
    Yin, GP
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2006, 414 (1-2) : 265 - 268
  • [30] High capacity SnxSbyCuz composite anodes for lithium ion batteries
    Nithya, C.
    Sowmiya, T.
    Baskar, K. Vijaya
    Selvaganeshan, N.
    Kalaiyarasi, T.
    Gopukumar, S.
    [J]. SOLID STATE SCIENCES, 2013, 19 : 144 - 149