ON THE RIEMANN CURVATURE OPERATORS IN RANDERS SPACES

被引:0
|
作者
Rafie-Rad, M. [1 ,2 ]
机构
[1] Inst Res Fundamental Sci IPM, Sch Math, Tehran, Iran
[2] Univ Mazandaran, Fac Math Sci, Dept Math, Babol Sar, Iran
关键词
Riemann curvature operator; Randers metric; principal curvature; S-curvature; MANIFOLDS;
D O I
10.1142/S0219887813500448
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Riemann curvature in Riemann-Finsler geometry can be regarded as a collection of linear operators on the tangent spaces. The algebraic properties of these operators may be linked to the geometry and the topology of the underlying space. The principal curvatures of a Finsler space (M, F) at a point x are the eigenvalues of the Riemann curvature operator at x. They are real functions. on the slit tangent manifold TM0. A principal curvature kappa(x, y) is said to be isotropic (respectively, quadratic) if kappa(x, y)/F(x, y) is a function of x only (respectively, kappa(x, y) is quadratic with respect to y). On the other hand, the Randers metrics are the most popular and prominent metrics in pure and applied disciplines. Here, it is proved that if a Randers metric admits an isotropic principal curvature, then F is of isotropic S-curvature. The same result is also established for F to admit a quadratic principal curvature. These results extend Shen's verbal results about Randers metrics of scalar flag curvature K = K(x) as well as those Randers metrics with quadratic Riemann curvature operator. The Riemann curvature R-k(i) may be broken into two operators R-k(i) and J(k)(i). The isotropic and quadratic principal curvature are characterized in terms of the eigenvalues of R and J.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] On the flag curvature of invariant randers metrics
    Moghaddam, Hamid Reza Salimi
    [J]. MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2008, 11 (01) : 1 - 9
  • [42] On the Flag Curvature of Invariant Randers Metrics
    Hamid Reza Salimi Moghaddam
    [J]. Mathematical Physics, Analysis and Geometry, 2008, 11 : 1 - 9
  • [43] RANDERS METRICS OF SECTIONAL FLAG CURVATURE
    Chen, Bin
    Zhao, Lili
    [J]. HOUSTON JOURNAL OF MATHEMATICS, 2010, 36 (01): : 55 - 67
  • [44] On the Ricci curvature of a Randers metric of isotropic S-curvature
    Xiao Huan Mo
    Chang Tao Yu
    [J]. Acta Mathematica Sinica, English Series, 2008, 24 : 911 - 916
  • [45] On the Ricci curvature of a Randers metric of isotropic S-curvature
    Mo, Xiao Huan
    Yu, Chang Tao
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2008, 24 (06) : 911 - 916
  • [46] On the Ricci Curvature of a Randers Metric of Isotropic S-curvature
    Xiao Huan MO Chang Tao YU Key Laboratory of Pure and Applied Mathematics
    [J]. Acta Mathematica Sinica,English Series, 2008, 24 (06) : 911 - 916
  • [47] Randers spaces with reversible geodesics
    Crampin, M
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 2005, 67 (3-4): : 401 - 409
  • [48] On Randers geodesic orbit spaces
    Chen, Huibin
    Zhang, Shaoxiang
    Zhu, Fuhai
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2022, 85
  • [49] Curvatures of homogeneous Randers spaces
    Deng, Shaoqiang
    Hu, Zhiguang
    [J]. ADVANCES IN MATHEMATICS, 2013, 240 : 194 - 226
  • [50] Curvature operators and generalizations of symmetric spaces in Lorentzian geometry
    Calvino-Louzao, E.
    Garcia-Rio, E.
    Vazquez-Abal, M. E.
    Vazquez-Lorenzo, R.
    [J]. ADVANCES IN GEOMETRY, 2012, 12 (01) : 83 - 100