Multi-active sites of iron carbide nanoparticles on nitrogen@cobalt-doped carbon for a highly efficient oxygen reduction reaction

被引:30
|
作者
An, Geon-Hyoung [1 ]
Lee, Young-Geun [2 ]
Ahn, Hyo-Jin [1 ,2 ]
机构
[1] Seoul Natl Univ Sci & Technol, Convergence Inst Biomed Engn & Biomat, Program Mat Sci & Engn, Seoul 139743, South Korea
[2] Seoul Natl Univ Sci & Technol, Dept Mat Sci & Engn, Seoul 139743, South Korea
基金
新加坡国家研究基金会;
关键词
Oxygen reduction reaction; Composite; Iron carbide; Nitrogen doping; Cobalt doping; ULTRAFAST LITHIUM STORAGE; ELECTROCATALYTIC ACTIVITY; OXIDE NANOPARTICLES; TRANSITION-METALS; FACILE SYNTHESIS; ENERGY-STORAGE; PERFORMANCE; NANOFIBERS; HYBRID; SUPERCAPACITORS;
D O I
10.1016/j.jallcom.2018.02.281
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The design of a low-cost, stable, and highly efficient electrocatalyst using a non-precious material and carbon composites for oxygen reduction reaction (ORR) activity to replace platinum-based electrocatalyst is essential for future energy conversion devices, such as fuel cells and metal air batteries. However, previous efforts to acquire the high ORR activity by non-precious material and carbon composites faced substantial challenges due to a few active sites during electrochemical reactions. Herein, we synthesize an advanced composite of iron carbide nanoparticles on nitrogen and cobalt-doped carbon nanofiber (Fe3C/N@Co-doped CNF) by electrospinning, a precures coating process and carbonization. Fe3C/N@Co-doped CNF offers a high onset potential of 0.9 V, high half-wave potential (E-1/2) potential of 0.8 V, and a nearly four-electron pathway (n = 3.9). Therefore, this unique composite provides multiactive sites using the doping system and metal carbide nanoparticles for the ORR activity, as well as an outstanding tolerance to methanol crossover. (c) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:177 / 184
页数:8
相关论文
共 50 条
  • [21] Activity and active sites of nitrogen-doped carbon nanotubes for oxygen reduction reaction
    Altansukh Dorjgotov
    Jinhee Ok
    YuKwon Jeon
    Seong-Ho Yoon
    Yong Gun Shul
    Journal of Applied Electrochemistry, 2013, 43 : 387 - 397
  • [22] Activity and active sites of nitrogen-doped carbon nanotubes for oxygen reduction reaction
    Dorjgotov, Altansukh
    Ok, Jinhee
    Jeon, YuKwon
    Yoon, Seong-Ho
    Shul, Yong Gun
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2013, 43 (04) : 387 - 397
  • [23] Cobalt/nitrogen doped hollow carbon sphere-bamboo like carbon nanotube for highly efficient oxygen reduction reaction
    Gao, Haili
    Ma, Zheng
    Zhao, Jingfang
    Lin, Jing
    Gao, Kezheng
    Zhang, Yong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 999
  • [24] Phosphorus modification of cobalt-iron nanoparticles embedded in a nitrogen-doped carbon network for oxygen reduction reaction
    Zhang, Rui
    Wang, Zheng
    Zhu, Lin
    Lv, Weixin
    Wang, Wei
    RSC ADVANCES, 2021, 11 (16) : 9450 - 9458
  • [25] Nitrogen-doped Graphene Loaded with Cobalt Nanoparticles as Efficient Electrocatalysts for Oxygen Reduction Reaction
    Zhang, Hong
    Li, Yanping
    Han, Gaoyi
    CHEMISTRYSELECT, 2022, 7 (04):
  • [26] Iron-Nitrogen-Doped Dendritic Carbon Nanostructures for an Efficient Oxygen Reduction Reaction
    Ferrero, Guillermo A.
    Diez, Noel
    Sevilla, Marta
    Fuertes, Antonio B.
    ACS APPLIED ENERGY MATERIALS, 2018, 1 (11): : 6560 - 6568
  • [27] Hierarchical Porous Carbon Doped with Iron/Nitrogen/Sulfur for Efficient Oxygen Reduction Reaction
    Kone, Issa
    Xie, Ao
    Tang, Yang
    Chen, Yu
    Liu, Jia
    Chen, Yongmei
    Sun, Yanzhi
    Yang, Xiaojin
    Wan, Pingyu
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (24) : 20963 - 20973
  • [28] Nitrogen-doped porous carbon embedded with cobalt nanoparticles for excellent oxygen reduction reaction
    Lu, Yaxiang
    Wen, Xin
    Chen, Xuecheng
    Chu, Paul K.
    Tang, Tao
    Mijowska, Ewa
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2019, 546 : 344 - 350
  • [29] Cobalt decorated nitrogen-doped carbon bowls as efficient electrocatalysts for the oxygen reduction reaction
    Zhong, Haobin
    Shi, Changwei
    Li, Jiantao
    Yu, Ruohan
    Yu, Qiang
    Liu, Haoyun
    Yao, Yao
    Wu, Jinsong
    Zhou, Liang
    Mai, Liqiang
    CHEMICAL COMMUNICATIONS, 2020, 56 (32) : 4488 - 4491
  • [30] Cobalt decorated nitrogen-doped carbon bowls as efficient electrocatalysts for the oxygen reduction reaction
    Zhong, Haobin
    Shi, Changwei
    Li, Jiantao
    Yu, Ruohan
    Yu, Qiang
    Liu, Haoyun
    Yao, Yao
    Wu, Jinsong
    Zhou, Liang
    Mai, Liqiang
    Chemical Communications, 2020, 56 (32): : 4488 - 4491