Coupled Mobius maps as a tool to model Kuramoto phase synchronization

被引:8
|
作者
Gong, Chen Chris [1 ]
Toenjes, Ralf [1 ]
Pikovsky, Arkady [1 ,2 ]
机构
[1] Univ Potsdam, Inst Phys & Astron, Karl Liebknecht Str 32, D-14476 Potsdam, Germany
[2] Nizhnii Novgorod State Univ, Dept Control Theory, Gagarin Ave 23, Nizhnii Novgorod 606950, Russia
基金
巴西圣保罗研究基金会; 俄罗斯科学基金会;
关键词
TRANSITIONS; ENSEMBLES; BEHAVIOR;
D O I
10.1103/PhysRevE.102.022206
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We propose Mobius maps as a tool to model synchronization phenomena in coupled phase oscillators. Not only does the map provide fast computation of phase synchronization, it also reflects the underlying group structure of the sinusoidally coupled continuous phase dynamics. We study map versions of various known continuous-time collective dynamics, such as the synchronization transition in the Kuramoto-Sakaguchi model of nonidentical oscillators, chimeras in two coupled populations of identical phase oscillators, and Kuramoto-Battogtokh chimeras on a ring, and demonstrate similarities and differences between the iterated map models and their known continuous-time counterparts.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Phase synchronization of two-dimensional lattices of coupled chaotic maps
    Hu, Bambi
    Liu, Zonghua
    Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 2000, 62 (2 A): : 2114 - 2118
  • [42] The Kuramoto model:: A simple paradigm for synchronization phenomena
    Acebrón, JA
    Bonilla, LL
    Vicente, CJP
    Ritort, F
    Spigler, R
    REVIEWS OF MODERN PHYSICS, 2005, 77 (01) : 137 - 185
  • [43] EMERGENCE OF SYNCHRONIZATION IN KURAMOTO MODEL WITH GENERAL DIGRAPH
    Zhang, Xiongtao
    Zhu, Tingting
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2023, 28 (03): : 2335 - 2390
  • [44] Exponential synchronization of the Kuramoto model with star topology
    Zhang, Wenyi
    Huang, Shaowei
    Mei, Shengwei
    Guan, Zhi-Hong
    Zhang, Xuemin
    Chi, Ming
    PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 10047 - 10050
  • [45] Synchronization transition in the Kuramoto model with colored noise
    Tonjes, Ralf
    PHYSICAL REVIEW E, 2010, 81 (05):
  • [46] Synchronization of Coupled Oscillators: The Taylor Expansion of the Inverse Kuramoto Map
    Huang, Elizabeth Y.
    Jafarpour, Saber
    Bullo, Francesco
    2018 IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2018, : 5340 - 5345
  • [47] Kuramoto model of synchronization: equilibrium and nonequilibrium aspects
    Gupta, Shamik
    Campa, Alessandro
    Ruffo, Stefano
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2014,
  • [48] Synchronization of relativistic particles in the hyperbolic Kuramoto model
    Ritchie, Louis M.
    Lohe, M. A.
    Williams, Anthony G.
    CHAOS, 2018, 28 (05)
  • [49] ON THE GENERIC COMPLETE SYNCHRONIZATION OF THE DISCRETE KURAMOTO MODEL
    Shim, Woojoo
    KINETIC AND RELATED MODELS, 2020, 13 (05) : 979 - 1005
  • [50] Synchronization in the Kuramoto model in presence of stochastic resetting
    Sarkar, Mrinal
    Gupta, Shamik
    CHAOS, 2022, 32 (07)