Coupled Mobius maps as a tool to model Kuramoto phase synchronization

被引:8
|
作者
Gong, Chen Chris [1 ]
Toenjes, Ralf [1 ]
Pikovsky, Arkady [1 ,2 ]
机构
[1] Univ Potsdam, Inst Phys & Astron, Karl Liebknecht Str 32, D-14476 Potsdam, Germany
[2] Nizhnii Novgorod State Univ, Dept Control Theory, Gagarin Ave 23, Nizhnii Novgorod 606950, Russia
基金
巴西圣保罗研究基金会; 俄罗斯科学基金会;
关键词
TRANSITIONS; ENSEMBLES; BEHAVIOR;
D O I
10.1103/PhysRevE.102.022206
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We propose Mobius maps as a tool to model synchronization phenomena in coupled phase oscillators. Not only does the map provide fast computation of phase synchronization, it also reflects the underlying group structure of the sinusoidally coupled continuous phase dynamics. We study map versions of various known continuous-time collective dynamics, such as the synchronization transition in the Kuramoto-Sakaguchi model of nonidentical oscillators, chimeras in two coupled populations of identical phase oscillators, and Kuramoto-Battogtokh chimeras on a ring, and demonstrate similarities and differences between the iterated map models and their known continuous-time counterparts.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Phase synchronization of coupled bursting neurons and the generalized Kuramoto model
    Ferrari, F. A. S.
    Viana, R. L.
    Lopes, S. R.
    Stoop, R.
    NEURAL NETWORKS, 2015, 66 : 107 - 118
  • [2] COUPLED CIRCLE MAPS AS A TOOL TO MODEL SYNCHRONIZATION IN NEURAL NETWORKS
    BAUER, M
    MARTIENSSEN, W
    NETWORK-COMPUTATION IN NEURAL SYSTEMS, 1991, 2 (04) : 345 - 351
  • [3] On the complete synchronization of the Kuramoto phase model
    Ha, Seung-Yeal
    Ha, Taeyoung
    Kim, Jong-Ho
    PHYSICA D-NONLINEAR PHENOMENA, 2010, 239 (17) : 1692 - 1700
  • [4] A RESEARCH ON PHASE SYNCHRONIZATION FOR EXTENDED KURAMOTO MODEL
    Jianhua Xu
    Changling Han
    Annals of Applied Mathematics, 2014, (02) : 216 - 221
  • [5] A RESEARCH ON PHASE SYNCHRONIZATION FOR EXTENDED KURAMOTO MODEL
    Jianhua Xu
    Changling Han
    Annals of Differential Equations, 2014, 30 (02) : 216 - 221
  • [6] On Synchronization of Coupled Hopf-Kuramoto Oscillators with Phase Delays
    Chung, Soon-Jo
    Slotine, Jean-Jacques
    49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2010, : 3181 - 3187
  • [7] Multistable behavior above synchronization in a locally coupled Kuramoto model
    Tilles, Paulo F. C.
    Ferreira, Fernando F.
    Cerdeira, Hilda A.
    PHYSICAL REVIEW E, 2011, 83 (06):
  • [8] Synchronization of coupled rotators: Josephson junction ladders and the locally coupled Kuramoto model
    Daniels, BC
    Dissanayake, STM
    Trees, BR
    PHYSICAL REVIEW E, 2003, 67 (02):
  • [9] Information geometry and synchronization phase transition in the Kuramoto model
    Alexandrov, Artem
    Gorsky, Alexander
    PHYSICAL REVIEW E, 2023, 107 (04)
  • [10] Kuramoto Model of Nonlinear Coupled Oscillators as a Way for Understanding Phase Synchronization: Application to Solar and Geomagnetic Indices
    Blanter, Elena M.
    Le Mouel, Jean-Louis
    Shnirman, Mikhail G.
    Courtillot, Vincent
    SOLAR PHYSICS, 2014, 289 (11) : 4309 - 4333