Effect of micromotion and local stress in quantum simulations with trapped ions in optical tweezers

被引:6
|
作者
Bond, Liam [1 ,2 ]
Lenstra, Lisa [3 ]
Gerritsma, Rene [1 ,2 ]
Safavi-Naini, Arghavan [1 ,2 ]
机构
[1] QuSoft, Sci Pk 123, NL-1098 XG Amsterdam, Netherlands
[2] Univ Amsterdam, Inst Theoret Phys, Inst Phys, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands
[3] Univ Amsterdam, Van der Waals Zeeman Inst, Inst Phys, NL-1098 XH Amsterdam, Netherlands
基金
荷兰研究理事会;
关键词
PHASE-TRANSITIONS; DYNAMICS;
D O I
10.1103/PhysRevA.106.042612
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The ability to program and control interactions provides the key to implementing large-scale quantum simulation and computation in trapped-ion systems. Adding optical tweezers, which can tune the phonon spectrum and thus modify the phonon-mediated spin-spin interaction, was recently proposed as a way of programing quantum simulators for a broader range of spin models [Arias Espinoza et al., Phys. Rev. A 104, 013302 (2021)]. In this work we study the robustness of our findings in the presence of experimental imperfections: micromotion, local stress, and intensity noise. We show that the effects of micromotion can be easily circumvented when designing and optimizing tweezer patterns to generate a target interaction. Furthermore, while local stress, whereby the tweezers apply small forces on individual ions, may appear to enable further tuning of the spin-spin interactions, any additional flexibility is negligible. We conclude that optical tweezers are a useful method for controlling interactions in trapped-ion quantum simulators in the presence of micromotion and imperfections in the tweezer alignment, but require intensity stabilization on the subpercent level.
引用
收藏
页数:7
相关论文
共 49 条
  • [1] Trapped ions quantum logic gate with optical tweezers and the Magnus effect
    Mazzanti, M.
    Gerritsma, R.
    Spreeuw, R. J. C.
    Safavi-Naini, A.
    PHYSICAL REVIEW RESEARCH, 2023, 5 (03):
  • [2] Alignment and optimization of optical tweezers on trapped ions
    Mazzanti, M.
    Pereira, C. Robalo
    Diepeveen, N. A.
    Gerritsen, B.
    Wu, Z.
    Ackerman, Z. E. D.
    Gallagher, L. P. H.
    Safavi-Naini, A.
    Gerritsma, R.
    Schussler, R. X.
    PHYSICAL REVIEW A, 2024, 110 (04)
  • [3] Quantum simulations with trapped ions
    Blatt, R.
    Roos, C. F.
    NATURE PHYSICS, 2012, 8 (04) : 277 - 284
  • [4] Quantum simulations with trapped ions
    Blatt R.
    Roos C.F.
    Nature Physics, 2012, 8 (4) : 277 - 284
  • [5] High-fidelity quantum gates for trapped ions under micromotion
    Shen, C.
    Duan, L. -M.
    PHYSICAL REVIEW A, 2014, 90 (02):
  • [6] Quantum simulations with cold trapped ions
    Johanning, Michael
    Varon, Andres F.
    Wunderlich, Christof
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2009, 42 (15)
  • [7] Quantum simulations with cold trapped ions
    Monz, Thomas
    Blatt, Rainer
    2017 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE & EUROPEAN QUANTUM ELECTRONICS CONFERENCE (CLEO/EUROPE-EQEC), 2017,
  • [8] Micromotion-enabled improvement of quantum logic gates with trapped ions
    Bermudez, Alejandro
    Schindler, Philipp
    Monz, Thomas
    Blatt, Rainer
    Mueller, Markus
    NEW JOURNAL OF PHYSICS, 2017, 19
  • [9] On the Brownian motion of a colloid trapped in optical tweezers: Experiments and simulations
    Perez-Guerrero, D.
    Morales-Cruzado, B.
    Guerrero-Garcia, G. I.
    Sarmiento-Gomez, E.
    AMERICAN JOURNAL OF PHYSICS, 2024, 92 (04) : 290 - 298
  • [10] Quantum Optical Networks with Trapped Ions
    Monroe, C.
    2010 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO) AND QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE (QELS), 2010,