Nanoparticle translocation through a lipid bilayer tuned by surface chemistry

被引:64
|
作者
da Rocha, Edroaldo Lummertz [1 ]
Caramori, Giovanni Finoto [2 ]
Rambo, Carlos Renato [1 ]
机构
[1] Univ Fed Santa Catarina, Grad Program Mat Sci & Engn, Florianpolis, SC, Brazil
[2] Univ Fed Santa Catarina, Dept Chem, Florianpolis, SC, Brazil
关键词
MOLECULAR-DYNAMICS SIMULATIONS; RECEPTOR-MEDIATED ENDOCYTOSIS; GOLD NANOPARTICLES; COMPUTER-SIMULATION; IN-VIVO; DENDRIMERS; MEMBRANES; PENETRATION; ADSORPTION; STRATEGIES;
D O I
10.1039/c2cp44035k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An enhanced understanding about the interactions between nanomaterials and cell membranes may have important implications for biomedical applications. In this work, coarse-grained molecular dynamics simulations of gold nanoparticles interacting with lipid bilayers were performed to evaluate the effect of hydrophobicity, charge density and ligand length on lipid bilayers. The simulations accomplished indicate that hydrophobic and anionic nanoparticles do not exhibit significant interactions and different charge densities may induce pore formation or nanoparticle wrapping, resembling first stages of endocytosis. The suggested interplay between charge density and ligand length has important implications when designing nanoparticles for drug and gene delivery applications. Moreover, control of charge densities may induce internalization of nanoparticles into cells through different mechanisms such as passive translocation, for nanoparticles with low charge density, or endocytosis for higher charge densities, highlighting the role of surface chemistry in nanoparticle-cell interactions.
引用
收藏
页码:2282 / 2290
页数:9
相关论文
共 50 条
  • [21] The influence of fluorescent silica nanoparticle surface chemistry on the energy transfer processes with lipid bilayers
    Zuccarello, L.
    Rampazzo, E.
    Petrizza, L.
    Prodi, L.
    Satriano, C.
    RSC ADVANCES, 2016, 6 (58) : 52674 - 52682
  • [22] Electrokinetic Translocation of a Deformable Nanoparticle through a Nanopore
    Zhou, Teng
    Ge, Jian
    Shi, Liuyong
    Liu, Zhenyu
    Deng, Yongbo
    Peng, Yinyin
    He, Xiaohan
    Tang, Rongnian
    Wen, Liping
    ACS APPLIED BIO MATERIALS, 2020, 3 (08): : 5160 - 5168
  • [23] Oxysterol Translocation through Lipid Bilayers
    Kulig, Waldemar
    Mikkolainen, Heikki
    Olzynska, Agnieszka
    Jurkiewicz, Piotr
    Cwiklik, Lukasz
    Rog, Tomasz
    Hof, Martin
    Jungwirth, Pavel
    Vattulainen, Ilpo
    BIOPHYSICAL JOURNAL, 2018, 114 (03) : 261A - 261A
  • [24] Nanoparticle-Membrane Interactions Studied with Lipid Bilayer Arrays
    Lu, Bin
    Smith, Tyler
    Li, Ruibin
    Xia, Tian
    Nel, Andre
    Schmidt, Jacob
    BIOPHYSICAL JOURNAL, 2014, 106 (02) : 415A - 415A
  • [25] Microfluidic fabrication of vesicles with hybrid lipid/nanoparticle bilayer membranes
    Perrotton, Julie
    Ahijado-Guzman, Ruben
    Moleiro, Lara H.
    Tinao, Berta
    Guerrero-Martinez, Andres
    Amstad, Esther
    Monroy, Francisco
    Arriaga, Laura R.
    SOFT MATTER, 2019, 15 (06) : 1388 - 1395
  • [26] Lipid Bilayer-Integrated Optoelectronic Tweezers for Nanoparticle Manipulations
    Ota, Sadao
    Wang, Sheng
    Wang, Yuan
    Yin, Xiaobo
    Zhang, Xiang
    NANO LETTERS, 2013, 13 (06) : 2766 - 2770
  • [27] Measurement of nanoparticle-membrane interactions with lipid bilayer arrays
    Lu, Bin
    Smith, Tyler
    Schmidt, Jacob
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [28] Translocation of a Charged Nanoparticle Through a Fluidic Nanochannel: The Interplay of Nanoparticle and Ions
    Su, Jiaye
    Guo, Hongxia
    JOURNAL OF PHYSICAL CHEMISTRY B, 2013, 117 (39): : 11772 - 11779
  • [29] Translocation of C60 and its derivatives across a lipid bilayer
    Qiao, Rui
    Roberts, Aaron P.
    Mount, Andrew S.
    Klaine, Stephen J.
    Ke, Pu Chun
    NANO LETTERS, 2007, 7 (03) : 614 - 619
  • [30] Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer
    Yang, Kai
    Ma, Yu-Qiang
    NATURE NANOTECHNOLOGY, 2010, 5 (08) : 579 - 583