Meta-Classification using SVM Classifiers for Text Documents

被引:0
|
作者
Morariu, Daniel I. [1 ]
Vintan, Lucian N. [1 ]
Tresp, Volker
机构
[1] Lucian Blaga Univ Sibiu, Fac Engn, Dept Comp Sci, E Cioran St 4, Sibiu 550025, Romania
关键词
Meta-classification; Learning with Kernels; Support Vector Machine; Performance Evaluation;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Text categorization is the problem of classifying text documents into a set of predefined classes. In this paper, we investigated three approaches to build a meta-classifier in order to increase the classification accuracy. The basic idea is to learn a meta-classifier to optimally select the best component classifier for each data point. The experimental results show that combining classifiers can significantly improve the accuracy of classification and that our meta-classification strategy gives better results than each individual classifier. For 7083 Reuters text documents we obtained a classification accuracies up to 92.04%.
引用
收藏
页码:222 / +
页数:3
相关论文
共 50 条
  • [31] An approach to text classification using dimensionality reduction and combination of classifiers
    Jain, G
    Ginwala, A
    Aslandogan, YA
    [J]. PROCEEDINGS OF THE 2004 IEEE INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION (IRI-2004), 2004, : 564 - 569
  • [32] An Empirical Analysis for Predicting Source Code File Reusability Using Meta-Classification Algorithms
    Kaur, Loveleen
    Mishra, Ashutosh
    [J]. ADVANCED COMPUTATIONAL AND COMMUNICATION PARADIGMS, VOL 2, 2018, 706 : 493 - 504
  • [33] Performance of NB and SVM Classifiers in Arabic Text Data
    Eljinini, Mohammad Ali H.
    Hadi, Wa'el Musa
    Mohammad, Adel Hamdan
    Ghatasheh, Mohammad
    [J]. BUSINESS TRANSFORMATION THROUGH INNOVATION AND KNOWLEDGE MANAGEMENT: AN ACADEMIC PERSPECTIVE, VOLS 3 AND 4, 2010, : 2593 - 2599
  • [34] Combining Probabilistic Classifiers for Text Classification
    Fragos, Kostas
    Belsis, Petros
    Skourlas, Christos
    [J]. 3RD INTERNATIONAL CONFERENCE ON INTEGRATED INFORMATION (IC-ININFO), 2014, 147 : 307 - 312
  • [35] Combining classifiers for quick text classification
    [J]. Zheng, W. (zhengwb@cjlu.edu.cn), 2013, Binary Information Press, P.O. Box 162, Bethel, CT 06801-0162, United States (09):
  • [36] A Novel Active Learning Method Using SVM for Text Classification
    Mohamed Goudjil
    Mouloud Koudil
    Mouldi Bedda
    Noureddine Ghoggali
    [J]. Machine Intelligence Research, 2018, 15 (03) : 290 - 298
  • [37] On strategies for imbalanced text classification using SVM: A comparative study
    Sun, Aixin
    Lim, Ee-Peng
    Liu, Ying
    [J]. DECISION SUPPORT SYSTEMS, 2009, 48 (01) : 191 - 201
  • [38] A Novel Active Learning Method Using SVM for Text Classification
    Goudjil M.
    Koudil M.
    Bedda M.
    Ghoggali N.
    [J]. International Journal of Automation and Computing, 2018, 15 (03) : 290 - 298
  • [39] Text Classification from Labeled and Unlabeled Documents using EM
    Kamal Nigam
    Andrew Kachites Mccallum
    Sebastian Thrun
    Tom Mitchell
    [J]. Machine Learning, 2000, 39 : 103 - 134
  • [40] Text classification from labeled and unlabeled documents using EM
    Nigam, K
    McCallum, AK
    Thrun, S
    Mitchell, T
    [J]. MACHINE LEARNING, 2000, 39 (2-3) : 103 - 134