Ground-state phase diagram of the quantum Rabi model

被引:24
|
作者
Ying, Zu-Jian [1 ,2 ,3 ]
Liu, Maoxin [1 ]
Luo, Hong-Gang [1 ,4 ,5 ]
Lin, Hai-Qing [1 ]
You, J. Q. [1 ]
机构
[1] Beijing Computat Sci Res Ctr, Beijing 100084, Peoples R China
[2] Univ Salerno, CNR SPIN, I-84084 Salerno, Italy
[3] Univ Salerno, Dipartimento Fis ER Caianiello, I-84084 Salerno, Italy
[4] Lanzhou Univ, Ctr Interdisciplinary Studies, Lanzhou 730000, Peoples R China
[5] Lanzhou Univ, Key Lab Magnetism & Magnet Mat, MoE, Lanzhou 730000, Peoples R China
来源
PHYSICAL REVIEW A | 2015年 / 92卷 / 05期
基金
中国国家自然科学基金;
关键词
SPACE QUANTIZATION; 2-STATE SYSTEM; ELECTRODYNAMICS; CAVITY; DYNAMICS; PHOTONS;
D O I
10.1103/PhysRevA.92.053823
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The Rabi model plays a fundamental role in understanding light-matter interaction. It reduces to the Jaynes-Cummings model via the rotating-wave approximation, which is applicable only to the cases of near resonance and weak coupling. However, recent experimental breakthroughs in upgrading light-matter coupling order require understanding the physics of the full quantum Rabi model (QRM). Despite the fact that its integrability and energy spectra have been exactly obtained, the challenge to formulate an exactwave function in a general case still hinders physical exploration of the QRM. Here we unveil a ground-state phase diagram of the QRM, consisting of a quadpolaron and a bipolaron as well as their changeover in the weak-, strong-, and intermediate-coupling regimes, respectively. An unexpected overweighted antipolaron is revealed in the quadpolaron state, and a hidden scaling behavior relevant to symmetry breaking is found in the bipolaron state. An experimentally accessible parameter is proposed to test these states, which might provide novel insights into the nature of the light-matter interaction for all regimes of the coupling strengths.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Phase diagram of the hexagonal lattice quantum dimer model: Order parameters, ground-state energy, and gaps
    Schlittler, Thiago M.
    Mosseri, Remy
    Barthel, Thomas
    PHYSICAL REVIEW B, 2017, 96 (19)
  • [22] Rabi oscillations in the excitonic ground-state transition of InGaAs quantum dots
    Borri, P
    Langbein, W
    Schneider, S
    Woggon, U
    Sellin, RL
    Ouyang, D
    Bimberg, D
    PHYSICAL REVIEW B, 2002, 66 (08) : 1 - 4
  • [23] Ground-state phase diagram of quantum Heisenberg antiferromagnets on the anisotropic dimerized square lattice
    Matsumoto, M
    Yasuda, C
    Todo, S
    Takayama, H
    PHYSICAL REVIEW B, 2002, 65 (01): : 1 - 8
  • [24] GROUND-STATE PHASE-DIAGRAM OF EXTENDED ATTRACTIVE HUBBARD-MODEL
    ROBASZKIEWICZ, S
    MICNAS, R
    CHAO, KA
    SOLID STATE COMMUNICATIONS, 1981, 40 (04) : 403 - 405
  • [25] Ground-state phase diagram of the half-filled bilayer Hubbard model
    Golor, Michael
    Reckling, Timo
    Classen, Laura
    Scherer, Michael M.
    Wessel, Stefan
    PHYSICAL REVIEW B, 2014, 90 (19):
  • [26] Ground-state magnetic phase diagram of the ferromagnetic Kondo-lattice model
    Henning, S.
    Nolting, W.
    PHYSICAL REVIEW B, 2009, 79 (06):
  • [27] Ground-state phase diagram of the SU(4) Heisenberg model on a plaquette lattice
    Kaneko, Ryui
    Goto, Shimpei
    Danshita, Ippei
    PHYSICAL REVIEW A, 2024, 110 (02)
  • [28] Ground-state phase diagram of a model FCC magnet with modified RKKY interaction
    Szalowski, K.
    Balcerzak, T.
    ACTA PHYSICA POLONICA A, 2008, 113 (01) : 421 - 424
  • [29] Ground-state phase diagram of the Kitaev-Heisenberg model on a kagome lattice
    Morita, Katsuhiro
    Kishimoto, Masanori
    Tohyama, Takami
    PHYSICAL REVIEW B, 2018, 98 (13)
  • [30] The ground-state phase diagram of the one-dimensional Kondo lattice model
    Tsunetsugu, H.
    Sigrist, M.
    Ueda, K.
    Reviews of Modern Physics, 69 (03):