Periodic Co/Nb pseudo spin valve for cryogenic memory

被引:28
|
作者
Klenov, Nikolay [1 ,2 ,3 ]
Khaydukov, Yury [1 ,4 ,5 ]
Bakurskiy, Sergey [1 ,2 ]
Morari, Roman [6 ]
Soloviev, Igor [1 ,2 ]
Boian, Vladimir [6 ]
Keller, Thomas [4 ,5 ]
Kupriyanov, Mikhail [1 ,2 ,7 ]
Sidorenko, Anatoli [6 ]
Keimer, Bernhard [4 ]
机构
[1] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow 119991, Russia
[2] Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Moscow Region, Russia
[3] All Russian Res Inst Automat, VNIIA, Moscow 127055, Russia
[4] Max Planck Inst Festkorperforsch, Heisenbergstr 1, D-70569 Stuttgart, Germany
[5] Heinz Maier Leibnitz Zentrum MLZ, Max Planck Soc Outstn, D-85748 Garching, Germany
[6] Inst Elect Engn & Nanotechnol ASM, MD-2028 Kishinev, Moldova
[7] KFU, Solid State Phys Dept, Kazan 420008, Russia
来源
基金
俄罗斯科学基金会;
关键词
cryogenic computing; neutron scattering; spin valve; superconducting spintronics; TRANSITION-TEMPERATURES; MULTILAYERS;
D O I
10.3762/bjnano.10.83
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We present a study of magnetic structures with controllable effective exchange energy for Josephson switches and memory applications. As a basis for a weak link we propose to use a periodic structure composed of ferromagnetic (F) layers spaced by thin superconductors (s). Our calculations based on the Usadel equations show that switching from parallel (P) to antiparallel (AP) alignment of neighboring F layers can lead to a significant enhancement of the critical current through the junction. To control the magnetic alignment we propose to use a periodic system whose unit cell is a pseudo spin valve of structure F-1/s/F-2/s where F-1 and F-2 are two magnetic layers having different coercive fields. In order to check the feasibility of controllable switching between AP and P states through the whole periodic structure, we prepared a superlattice [Co(1.5 nm)/Nb(8 nm)/Co(2.5 nm)/Nb(8 nm)](6) between two superconducting layers of Nb(25 nm). Neutron scattering and magnetometry data showed that parallel and antiparallel alignment can be controlled with a magnetic field of only several tens of Oersted.
引用
收藏
页码:833 / 839
页数:7
相关论文
共 50 条
  • [41] Switching field trends in pseudo spin valve nanoelement arrays
    Castaño, FJ
    Hao, Y
    Ross, CA
    Vögeli, B
    Smith, HI
    Haratani, S
    JOURNAL OF APPLIED PHYSICS, 2002, 91 (10) : 7317 - 7319
  • [42] Micromagnetics simulation of asymmetric pseudo-spin valve dots
    Dao, N
    Ross, CA
    Castaño, FJ
    Donahue, MJ
    Whittenburg, SL
    MODELING AND NUMERICAL SIMULATION OF MATERIALS BEHAVIOR AND EVOLUTION, 2002, 731 : 291 - 296
  • [43] Giant magnetoresistance in Co/Cu/Co pseudo spin valves
    Wang, JQ
    Malkinski, LM
    MacLaren, JM
    Whittenburg, SL
    O'Connor, CJ
    EUROPEAN MAGNETIC MATERIALS AND APPLICATIONS, 2001, 373-3 : 75 - 80
  • [44] Tailoring the magnetic and magneto-transport properties of Pd/Co multilayers and pseudo-spin valve antidots
    Saldanha, D. R.
    Dugato, D. A.
    Mori, T. J. A.
    Daudt, N. F.
    Dorneles, L. S.
    Denardin, J. C.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2018, 51 (39)
  • [45] Sense Amplifier for Spin-Based Cryogenic Memory Cells
    Krylov, Gleb
    Friedman, Eby G.
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2019, 29 (05)
  • [46] A Novel Boundary Approach for Spin Polarized Transport in Pseudo-Spin-Valve Structure
    Hu, Jiuning
    Ren, Min
    Zhang, Lei
    Deng, Ning
    Dong, Hao
    Chen, Peiyi
    2007 7TH IEEE CONFERENCE ON NANOTECHNOLOGY, VOL 1-3, 2007, : 224 - 228
  • [47] Magnetic Properties of Perpendicularly Magnetized [Co/Pd]/Au/[Co/Pd] Pseudo-Spin-Valve Nano-Ring Structures
    Liu, X. M.
    Jain, S.
    Adeyeye, A. O.
    IEEE TRANSACTIONS ON MAGNETICS, 2011, 47 (10) : 2628 - 2631
  • [49] Current-in-plane pseudo-spin-valve device performance for giant magnetoresistive random access memory applications (invited)
    Katti, RR
    JOURNAL OF APPLIED PHYSICS, 2002, 91 (10) : 7245 - 7250
  • [50] Size dependence of switching thresholds for pseudo spin valve MRAM cells
    Everitt, B.A.
    Pohm, A.V.
    Daughton, J.M.
    Journal of Applied Physics, 1997, 81 (8 pt 2A):