Bilinear pseudo-differential operators with exotic symbols, II

被引:6
|
作者
Miyachi, Akihiko [1 ]
Tomita, Naohito [2 ]
机构
[1] Tokyo Womans Christian Univ, Dept Math, Suginami Ku, Tokyo 1678585, Japan
[2] Osaka Univ, Grad Sch Sci, Dept Math, Toyonaka, Osaka 5600043, Japan
基金
日本学术振兴会;
关键词
Bilinear pseudo-differential operators; Bilinear Hormander symbol classes; Hardy spaces;
D O I
10.1007/s11868-018-0251-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The boundedness from H-p x L-2 to L-r, 1/p+1/2 = 1/r, and from H-p x L-infinity to L-p of bilinear pseudo-differential operators is proved under the assumption that their symbols are in the bilinear Hormander class BS rho,rho m, 0 <= rho < 1, of critical order m, where H-p is the Hardy space. This combined with the previous results of the same authors establishes the sharp boundedness from H-p x H-q to L-r, 1/p + 1/q = 1/r, of those operators in the full range 0 < p,q <= infinity, where L-r is replaced by BMO if r = infinity.
引用
收藏
页码:397 / 413
页数:17
相关论文
共 50 条
  • [31] Pseudo-Differential Operators
    Yuan, Wen
    Sickel, Winfried
    Yang, Dachun
    [J]. MORREY AND CAMPANATO MEET BESOV, LIZORKIN AND TRIEBEL, 2010, 2005 : 137 - 146
  • [32] PSEUDO-DIFFERENTIAL OPERATORS
    VAROPOULOS, NT
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1990, 310 (11): : 769 - 774
  • [33] Boundedness of Smooth Bilinear Square Functions and Applications to Some Bilinear Pseudo-differential Operators
    Bernicot, Frederic
    Shrivastava, Saurabh
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2011, 60 (01) : 233 - 268
  • [34] A calculus for classical pseudo-differential operators with non-smooth symbols
    Witt, I
    [J]. MATHEMATISCHE NACHRICHTEN, 1998, 194 : 239 - 284
  • [35] Trace ideals for pseudo-differential operators and their commutators with symbols in α-modulation spaces
    Kobayashi, Masaharu
    Sugimoto, Mitsuru
    Tomita, Naohito
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2009, 107 : 141 - 160
  • [36] Estimates for Bilinear Pseudo-Differential Operators and Their Commutators on Product of Homogeneous Spaces
    Lu, Guanghui
    Rui, Li
    [J]. SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2024, 48 (04) : 493 - 510
  • [37] Q-matrices as pseudo-differential operators with negative definite symbols
    Evans, Kristian
    Jacob, Niels
    [J]. MATHEMATISCHE NACHRICHTEN, 2013, 286 (5-6) : 631 - 640
  • [38] Double Weighted Commutators Theorem for Pseudo-Differential Operators with Smooth Symbols
    Yu-long Deng
    Zhi-tian Chen
    Shun-chao Long
    [J]. Czechoslovak Mathematical Journal, 2021, 71 : 173 - 190
  • [39] DOUBLE WEIGHTED COMMUTATORS THEOREM FOR PSEUDO-DIFFERENTIAL OPERATORS WITH SMOOTH SYMBOLS
    Deng, Yu-long
    Chen, Zhi-tian
    Long, Shun-chao
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2021, 71 (01) : 173 - 190
  • [40] Sharp estimates for pseudo-differential operators with symbols of limited smoothness and commutators
    Lannes, D
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 232 (02) : 495 - 539