Detecting Malicious Executable Files Based on Static-Dynamic Analysis Using Machine Learning

被引:1
|
作者
Ognev, R. A. [1 ]
Zhukovskii, E. V. [1 ]
Zegzhda, D. P. [1 ]
Kiselev, A. N. [2 ]
机构
[1] Peter Great St Petersburg Polytech Univ, St Petersburg 195251, Russia
[2] Mozhaisky Mil Space Acad, St Petersburg 197198, Russia
关键词
information security systems; malware detection; static-dynamic analysis; feature selection of program behavior parameters;
D O I
10.3103/S0146411622080120
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In current operating systems, executable files are used to solve various problems, which in turn can be either benign (perform only necessary actions) or malicious (the main purpose of which is to perform destructive actions in relation to the system). Thus, malware is a program used for unauthorized access to information and/or impact on information or resources of an automated information system. Here, the problem of determining the types of executable files and detecting malware is solved.
引用
收藏
页码:852 / 864
页数:13
相关论文
共 50 条
  • [31] An Approach to Static-Dynamic Software Analysis
    Gonzalez-de-Aledo, Pablo
    Sanchez, Pablo
    Huuck, Ralf
    [J]. FORMAL TECHNIQUES FOR SAFETY-CRITICAL SYSTEMS, (FTSCS 2015), 2016, 596 : 225 - 240
  • [32] Integrating Static and Dynamic Malware Analysis Using Machine Learning
    Mangialardo, R. J.
    Duarte, J. C.
    [J]. IEEE LATIN AMERICA TRANSACTIONS, 2015, 13 (09) : 3080 - 3087
  • [33] Machine Learning on Merging Static and Dynamic Features to Identify Malicious Mobile Apps
    Su, Ming-Yang
    Chang, Jer-Yuan
    Fung, Kek-Tung
    [J]. 2017 NINTH INTERNATIONAL CONFERENCE ON UBIQUITOUS AND FUTURE NETWORKS (ICUFN 2017), 2017, : 863 - 867
  • [34] Detection of Malicious Binaries by Applying Machine Learning Models on Static and Dynamic Artefacts
    Chukka, Anantha Rao
    Devi, V. Susheela
    [J]. PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON INTERNET OF THINGS, BIG DATA AND SECURITY (IOTBDS), 2021, : 29 - 37
  • [35] Detecting Malicious Botnets in IoT Networks Using Machine Learning Techniques
    Asghar, Muhammad Nabeel
    Asif, Muhammad
    Murad, Zara
    Alyahya, Ahmed
    [J]. IPSI BGD TRANSACTIONS ON INTERNET RESEARCH, 2024, 20 (02):
  • [36] Detecting Malicious Botnets in IoT Networks Using Machine Learning Techniques
    Asghar, Muhammad Nabeel
    Raza, Muhammad Asif
    Murad, Zara
    Alyahya, Ahmed
    [J]. IPSI BGD TRANSACTIONS ON INTERNET RESEARCH, 2024, 20 (01): : 24 - 35
  • [37] Machine Learning-Based System for Detecting Unseen Malicious Software
    Bisio, Federica
    Gastaldo, Paolo
    Meda, Claudia
    Nasta, Stefano
    Zunino, Rodolfo
    [J]. APPLICATIONS IN ELECTRONICS PERVADING INDUSTRY, ENVIRONMENT AND SOCIETY, APPLEPIES 2014, 2016, 351 : 9 - 15
  • [38] A Machine Learning Approach to Threat Hunting in Malicious PDF Files
    Teymourlouei, Haydar
    Harris, Vareva E.
    [J]. 2023 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE, CSCI 2023, 2023, : 782 - 787
  • [39] Static detection of application backdoorsDetecting both malicious software behavior and malicious indicators from the static analysis of executable code
    Chris Wysopal
    Chris Eng
    Tyler Shields
    [J]. Datenschutz und Datensicherheit - DuD, 2010, 34 (3) : 149 - 155
  • [40] Detecting Malicious URLs Based on Machine Learning Algorithms and Word Embeddings
    Crisan, Andrei
    Florea, Gabriel
    Halasz, Lorand
    Lemnaru, Camelia
    Oprisa, Ciprian
    [J]. 2020 IEEE 16TH INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTER COMMUNICATION AND PROCESSING (ICCP 2020), 2020, : 187 - 193