Detecting Malicious Executable Files Based on Static-Dynamic Analysis Using Machine Learning

被引:1
|
作者
Ognev, R. A. [1 ]
Zhukovskii, E. V. [1 ]
Zegzhda, D. P. [1 ]
Kiselev, A. N. [2 ]
机构
[1] Peter Great St Petersburg Polytech Univ, St Petersburg 195251, Russia
[2] Mozhaisky Mil Space Acad, St Petersburg 197198, Russia
关键词
information security systems; malware detection; static-dynamic analysis; feature selection of program behavior parameters;
D O I
10.3103/S0146411622080120
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In current operating systems, executable files are used to solve various problems, which in turn can be either benign (perform only necessary actions) or malicious (the main purpose of which is to perform destructive actions in relation to the system). Thus, malware is a program used for unauthorized access to information and/or impact on information or resources of an automated information system. Here, the problem of determining the types of executable files and detecting malware is solved.
引用
收藏
页码:852 / 864
页数:13
相关论文
共 50 条
  • [1] Detecting Malicious Executable Files Based on Static–Dynamic Analysis Using Machine Learning
    R. A. Ognev
    E. V. Zhukovskii
    D. P. Zegzhda
    A. N. Kiselev
    [J]. Automatic Control and Computer Sciences, 2022, 56 : 852 - 864
  • [2] IDS for Detecting Malicious Non-Executable Files Using Dynamic Analysis
    Bazzi, Ahmad
    Onozato, Yoshikuni
    [J]. 2013 15TH ASIA-PACIFIC NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM (APNOMS), 2013,
  • [3] A similarity based technique for detecting malicious executable files for computer forensics
    Park, Jun-Hyung
    Kim, Minsoo
    Noh, Bong-Nam
    Joshi, James B. D.
    [J]. IRI 2006: PROCEEDINGS OF THE 2006 IEEE INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION, 2006, : 188 - +
  • [4] Features of Detecting Malicious Installation Files Using Machine Learning Algorithms
    P. E. Yugai
    E. V. Zhukovskii
    P. O. Semenov
    [J]. Automatic Control and Computer Sciences, 2023, 57 : 968 - 974
  • [5] Features of Detecting Malicious Installation Files Using Machine Learning Algorithms
    Yugai, P. E.
    Zhukovskii, E. V.
    Semenov, P. O.
    [J]. AUTOMATIC CONTROL AND COMPUTER SCIENCES, 2023, 57 (08) : 968 - 974
  • [6] Hidost: a static machine-learning-based detector of malicious files
    Srndic, Nedim
    Laskov, Pavel
    [J]. EURASIP JOURNAL ON INFORMATION SECURITY, 2016,
  • [7] An Experimental Analysis on Malware Detection in Executable Files using Machine Learning
    Sharma, Anurag
    Mohanty, Suman
    Islam, Md Ruhul
    [J]. 2021 8TH INTERNATIONAL CONFERENCE ON SMART COMPUTING AND COMMUNICATIONS (ICSCC), 2021, : 178 - 182
  • [8] Ransomware Detection in Executable Files Using Machine Learning
    Ganta, Venkata Gopi
    Harish, G. Venkata
    Kumar, V. Prem
    Rao, G. Rama Koteswar
    [J]. 2020 5TH IEEE INTERNATIONAL CONFERENCE ON RECENT TRENDS ON ELECTRONICS, INFORMATION, COMMUNICATION & TECHNOLOGY (RTEICT-2020), 2020, : 282 - 286
  • [9] Clustering of Malicious Executable Files Based on the Sequence Analysis of System Calls
    Ognev, R. A.
    Zhukovskii, E. V.
    Zegzhda, D. P.
    [J]. AUTOMATIC CONTROL AND COMPUTER SCIENCES, 2019, 53 (08) : 1045 - 1055
  • [10] Clustering of Malicious Executable Files Based on the Sequence Analysis of System Calls
    R. A. Ognev
    E. V. Zhukovskii
    D. P. Zegzhda
    [J]. Automatic Control and Computer Sciences, 2019, 53 : 1045 - 1055