On-Line Learning of the Visuomotor Transformations on a Humanoid Robot

被引:0
|
作者
Antonelli, Marco [1 ]
Chinellato, Eris [2 ]
Del Pobil, Angel P. [3 ]
机构
[1] Jaume I Univ, Robot Intelligence Lab, Castellon De La Plana 12071, Spain
[2] Imperial Coll London, Dept Elect & Elect Engn, London, England
[3] Jaume Univ, Spain & Dept Interact, Robot Intelligence Lab, Seoul, South Korea
来源
基金
新加坡国家研究基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In infant primates, the combination of looking and reaching to the same target is used to establish an implicit sensorimotor representation of the peripersonal space. This representation is created incrementally by linking together correlated signals. Also, such a map is not learned all at once, but following an order established by the temporal dependences between different modalities, which is imposed by the choice of the vision as master signal. Indeed, visual feedback is used both to correct gazing movements and to improve eye-arm coordination. Inspired by these observations we have developed a framework for building and maintaining an implicit sensorimotor map of the environment. In this work we present how this framework can be extended to allow a humanoid robot to update on-line the sensorimotor transformations among visual, oculomotor and arm-motor cues.
引用
收藏
页码:853 / +
页数:2
相关论文
共 50 条
  • [41] Machine Learning in a Humanoid Intelligent Service Robot
    Yen, Hsueh-Chuan
    Hsia, Tai-Chang
    Liao, Ren-Chieh
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2014, 35 (02): : 129 - 141
  • [42] A Reinforcement Learning Method for Humanoid Robot Walking
    Liu, Yunda
    Bi, Sheng
    Dong, Min
    Zhang, Yingjie
    Huang, Jialing
    Zhang, Jiawei
    2018 IEEE 8TH ANNUAL INTERNATIONAL CONFERENCE ON CYBER TECHNOLOGY IN AUTOMATION, CONTROL, AND INTELLIGENT SYSTEMS (IEEE-CYBER), 2018, : 623 - 628
  • [43] Learning Computer Vision using a Humanoid Robot
    Vital, Jessica P. M.
    Fonseca Ferreira, N. M.
    Valente, Antonio
    Filipe, Vitor
    Soares, Salviano F. S. P.
    PROCEEDINGS OF 2019 IEEE GLOBAL ENGINEERING EDUCATION CONFERENCE (EDUCON), 2019, : 639 - 645
  • [44] Deep Reinforcement Learning for Humanoid Robot Behaviors
    Alexandre F. V. Muzio
    Marcos R. O. A. Maximo
    Takashi Yoneyama
    Journal of Intelligent & Robotic Systems, 2022, 105
  • [45] Deep Reinforcement Learning for Humanoid Robot Dribbling
    Muzio, Alexandre F., V
    Maximo, Marcos R. O. A.
    Yoneyama, Takashi
    2020 XVIII LATIN AMERICAN ROBOTICS SYMPOSIUM, 2020 XII BRAZILIAN SYMPOSIUM ON ROBOTICS AND 2020 XI WORKSHOP OF ROBOTICS IN EDUCATION (LARS-SBR-WRE 2020), 2020, : 246 - 251
  • [46] Motor Program Learning for Humanoid Robot Drawing
    Makkar, Deepanshu
    Atoofi, Payam
    Hamker, Fred
    Nassour, John
    2018 IEEE-RAS 18TH INTERNATIONAL CONFERENCE ON HUMANOID ROBOTS (HUMANOIDS), 2018, : 887 - 892
  • [47] Unsupervised Learning of Affordance Relations on a Humanoid Robot
    Akgun, Baris
    Dag, Nilguen
    Bilal, Tahir
    Atil, Ilkay
    Sahin, Erol
    2009 24TH INTERNATIONAL SYMPOSIUM ON COMPUTER AND INFORMATION SCIENCES, 2009, : 253 - 258
  • [48] Development of a Social Learning Mechanism for a Humanoid Robot
    De Silva, P. Ravindra S.
    Matsumoto, Tohru
    Lambacher, Stephen G.
    Higashi, Masatake
    ISSNIP 2008: PROCEEDINGS OF THE 2008 INTERNATIONAL CONFERENCE ON INTELLIGENT SENSORS, SENSOR NETWORKS, AND INFORMATION PROCESSING, 2008, : 243 - +
  • [49] Deep Reinforcement Learning for Humanoid Robot Behaviors
    Muzio, Alexandre F. V.
    Maximo, Marcos R. O. A.
    Yoneyama, Takashi
    Journal of Intelligent and Robotic Systems: Theory and Applications, 2022, 105 (01):
  • [50] Learning Parameterized Motor Skills on a Humanoid Robot
    da Silva, Bruno Castro
    Baldassarre, Gianluca
    Konidaris, George
    Barto, Andrew
    2014 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2014, : 5239 - 5244