QUASI-PERIODIC SOLUTIONS OF THE RELATIVISTIC TODA HIERARCHY

被引:4
|
作者
Gong, Dong [1 ]
Geng, Xianguo [1 ]
机构
[1] Zhengzhou Univ, Dept Math, Zhengzhou 450001, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Relativistic Toda hierarchy; quasi-periodic solutions; RECURSION OPERATOR; LATTICE;
D O I
10.1142/S1402925112500301
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
On the basis of the theory of algebraic curves, the continuous flow and discrete flow related to the relativistic Toda hierarchy are straightened out using the Abel-Jacobi coordinates. The meromorphic function and the Baker-Akhiezer function are introduced on the hyperelliptic curve. Quasi-periodic solutions of the relativistic Toda hierarchy are constructed with the help of the asymptotic properties and the algebro-geometric characters of the meromorphic function and the hyperelliptic curve.
引用
收藏
页码:489 / 523
页数:35
相关论文
共 50 条
  • [41] A result on quasi-periodic solutions of a nonlinear beam equation with a quasi-periodic forcing term
    Wang, Yi
    Si, Jianguo
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2012, 63 (01): : 189 - 190
  • [42] A result on quasi-periodic solutions of a nonlinear beam equation with a quasi-periodic forcing term
    Yi Wang
    Jianguo Si
    Zeitschrift für angewandte Mathematik und Physik, 2012, 63 : 189 - 190
  • [43] QUASI-PERIODIC SOLUTIONS OF THE BOOMERON EQUATION
    MARTINI, R
    WESSELIUS, W
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (09): : 1315 - 1326
  • [44] QUASI-PERIODIC SOLUTIONS OF HAMILTONIAN SYSTEMS
    LIEBERMAN, BB
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1972, 11 (01) : 109 - +
  • [45] BOUNDEDNESS OF SOLUTIONS FOR QUASI-PERIODIC POTENTIALS
    LEVI, M
    ZEHNDER, E
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1995, 26 (05) : 1233 - 1256
  • [46] Quasi-periodic solutions for an asymmetric oscillation
    Huang, Peng
    Li, Xiong
    Liu, Bin
    NONLINEARITY, 2016, 29 (10) : 3006 - 3030
  • [47] PERIODIC AND QUASI-PERIODIC SOLUTIONS OF RESTRICTED PROBLEM (11)
    SERGYSELS, R
    SERGYSEL.A
    BULLETIN DE LA CLASSE DES SCIENCES ACADEMIE ROYALE DE BELGIQUE, 1974, 60 (04): : 436 - 443
  • [48] PERIODIC AND QUASI-PERIODIC SOLUTIONS OF DEGENERATE MODULATION EQUATIONS
    DOELMAN, A
    ECKHAUS, W
    PHYSICA D, 1991, 53 (2-4): : 249 - 266
  • [49] Quasi-periodic solutions of a class of nonlinear quasi-periodic systems with Liouvillean frequencies and multiple eigenvalues ☆
    Zhang, Dongfeng
    Xu, Junxiang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 427 : 350 - 403
  • [50] Reducibility and quasi-periodic solutions for a two dimensional beam equation with quasi-periodic in time potential
    Zhang, Min
    Wang, Yi
    Li, Yan
    AIMS MATHEMATICS, 2021, 6 (01): : 643 - 674