Limit Theorems for Local Particle Numbers in Branching Random Walk

被引:2
|
作者
Bulinskaya, E. Vl [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Fac Mech & Math, Moscow 119992, Russia
基金
俄罗斯基础研究基金会;
关键词
Asymptotic Behavior; Random Walk; Limit Theorem; DOKLADY Mathematic; Probability Generate Function;
D O I
10.1134/S1064562412030325
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:403 / 405
页数:3
相关论文
共 50 条
  • [41] A second order asymptotic expansion in the local limit theorem for a simple branching random walk in Zd
    Gao, Zhi-Qiang
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2018, 128 (12) : 4000 - 4017
  • [42] Exact convergence rate in the local central limit theorem for a lattice branching random walk on Zd
    Gao, Zhi-Qiang
    [J]. STATISTICS & PROBABILITY LETTERS, 2019, 151 : 58 - 66
  • [43] LOCAL LIMIT THEOREMS IN THEORY OF BRANCHING STOCHASTIC PROCESSES
    CHISTYAK.VP
    [J]. THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1965, 10 (03): : 538 - &
  • [44] Scaling limit and ageing for branching random walk in Pareto environment
    Ortgiese, Marcel
    Roberts, Matthew, I
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2018, 54 (03): : 1291 - 1313
  • [45] Conditional central limit theorem for critical branching random walk
    Hong, Wenming
    Liang, Shengli
    [J]. ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2024, 21 : 555 - 574
  • [46] Conditional central limit theorem for subcritical branching random walk
    Hong, Wenming
    Yao, Dan
    [J]. ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2023, 20 (02): : 1411 - 1432
  • [47] LIMIT THEOREMS FOR BETTI NUMBERS OF RANDOM SIMPLICIAL COMPLEXES
    Kahle, Matthew
    Meckes, Elizabeth
    [J]. HOMOLOGY HOMOTOPY AND APPLICATIONS, 2013, 15 (01) : 343 - 374
  • [48] Branching random walk with non-local competition
    Maillard, Pascal
    Penington, Sarah
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2024, 109 (06):
  • [49] LIMIT THEOREMS IN THE RANDOM WALK DESCRIBED BY THE GENERALIZATION OF THE AUTOREGRESSIVE PROCESS
    Ragimov, Fada H.
    Aliyev, Soltan A.
    Ibadova, Irada A.
    [J]. PROCEEDINGS OF THE7TH INTERNATIONAL CONFERENCE ON CONTROL AND OPTIMIZATION WITH INDUSTRIAL APPLICATIONS, VOL II, 2020, : 320 - 322
  • [50] Limit theorems in the boundary hitting problem for a multidimensional random walk
    Borovkov, AA
    Mogul'skii, AA
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 2001, 42 (02) : 245 - 270