Valuation Equations for Stochastic Volatility Models

被引:12
|
作者
Bayraktar, Erhan [1 ]
Kardaras, Constantinos [2 ]
Xing, Hao [3 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48104 USA
[2] Boston Univ, Dept Math & Stat, Boston, MA 02215 USA
[3] Univ London London Sch Econ & Polit Sci, Dept Stat, London WC2A 2AE, England
来源
基金
美国国家科学基金会;
关键词
stochastic volatility models; valuation equations; Feynman-Kac theorem; strict local martingales; necessary and sufficient conditions for uniqueness; ASSET PRICE BUBBLES; BOUNDARY; MARTINGALES; REGULARITY; UNIQUENESS; OPTIONS;
D O I
10.1137/110842302
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We analyze the valuation partial differential equation for European contingent claims in a general framework of stochastic volatility models where the diffusion coefficients may grow faster than linearly and degenerate on the boundaries of the state space. We allow for various types of model behavior: the volatility process in our model can potentially reach zero and either stay there or instantaneously reflect, and the asset-price process may be a strict local martingale. Our main result is a necessary and sufficient condition on the uniqueness of classical solutions to the valuation equation: the value function is the unique nonnegative classical solution to the valuation equation among functions with at most linear growth if and only if the asset price is a martingale.
引用
收藏
页码:351 / 373
页数:23
相关论文
共 50 条
  • [31] MULTIFRACTIONAL STOCHASTIC VOLATILITY MODELS
    Corlay, Sylvain
    Lebovits, Joachim
    Vehel, Jacques Levy
    [J]. MATHEMATICAL FINANCE, 2014, 24 (02) : 364 - 402
  • [32] Gamma stochastic volatility models
    Abraham, B
    Balakrishna, N
    Sivakumar, R
    [J]. JOURNAL OF FORECASTING, 2006, 25 (03) : 153 - 171
  • [33] INFLUENCE IN STOCHASTIC VOLATILITY MODELS
    Motta, Anderson C. O.
    Hotta, Luiz K.
    [J]. ADVANCES AND APPLICATIONS IN STATISTICS, 2012, 27 (01) : 27 - 45
  • [34] Complete models with stochastic volatility
    Hobson, DG
    Rogers, LCG
    [J]. MATHEMATICAL FINANCE, 1998, 8 (01) : 27 - 48
  • [35] Stochastic volatility and DSGE models
    Andreasen, Martin M.
    [J]. ECONOMICS LETTERS, 2010, 108 (01) : 7 - 9
  • [36] On calibration of stochastic and fractional stochastic volatility models
    Mrazek, Milan
    Pospisil, Jan
    Sobotka, Tomas
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2016, 254 (03) : 1036 - 1046
  • [37] Stochastic Evolution Equations for Large Portfolios of Stochastic Volatility Models (vol 8, pg 962, 2017)
    Hambly, Ben
    Kolliopoulos, Nikolaos
    [J]. SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2019, 10 (03): : 857 - 876
  • [38] VOLATILITY INFERENCE AND RETURN DEPENDENCIES IN STOCHASTIC VOLATILITY MODELS
    Pfante, Oliver
    Bertschinger, Nils
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 2019, 22 (03)
  • [39] RBF-FD schemes for option valuation under models with price-dependent and stochastic volatility
    Thakoor, Nawdha
    Tangman, Desire Yannick
    Bhuruth, Muddun
    [J]. ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2018, 92 : 207 - 217
  • [40] Stochastic volatility asymptotics of stock loans: Valuation and optimal stopping
    Wong, Tat Wing
    Wong, Hoi Ying
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 394 (01) : 337 - 346