Valuation Equations for Stochastic Volatility Models

被引:12
|
作者
Bayraktar, Erhan [1 ]
Kardaras, Constantinos [2 ]
Xing, Hao [3 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48104 USA
[2] Boston Univ, Dept Math & Stat, Boston, MA 02215 USA
[3] Univ London London Sch Econ & Polit Sci, Dept Stat, London WC2A 2AE, England
来源
基金
美国国家科学基金会;
关键词
stochastic volatility models; valuation equations; Feynman-Kac theorem; strict local martingales; necessary and sufficient conditions for uniqueness; ASSET PRICE BUBBLES; BOUNDARY; MARTINGALES; REGULARITY; UNIQUENESS; OPTIONS;
D O I
10.1137/110842302
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We analyze the valuation partial differential equation for European contingent claims in a general framework of stochastic volatility models where the diffusion coefficients may grow faster than linearly and degenerate on the boundaries of the state space. We allow for various types of model behavior: the volatility process in our model can potentially reach zero and either stay there or instantaneously reflect, and the asset-price process may be a strict local martingale. Our main result is a necessary and sufficient condition on the uniqueness of classical solutions to the valuation equation: the value function is the unique nonnegative classical solution to the valuation equation among functions with at most linear growth if and only if the asset price is a martingale.
引用
收藏
页码:351 / 373
页数:23
相关论文
共 50 条
  • [1] Stochastic lattice models for valuation of volatility options
    Ma, Jingtang
    Li, Wenyuan
    Han, Xu
    [J]. ECONOMIC MODELLING, 2015, 47 : 93 - 104
  • [2] A General Valuation Framework for SABR and Stochastic Local Volatility Models
    Cui, Zhenyu
    Kirkby, J. Lars
    Duy Nguyen
    [J]. SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2018, 9 (02): : 520 - 563
  • [3] Stochastic Evolution Equations for Large Portfolios of Stochastic Volatility Models
    Hambly, Ben
    Kolliopoulos, Nikolaos
    [J]. SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2017, 8 (01): : 962 - 1014
  • [4] Orthogonal polynomial expansions for the valuation of options under the stochastic volatility models with stochastic correlation
    Tong, Kevin Z.
    [J]. JOURNAL OF MANAGEMENT SCIENCE AND ENGINEERING, 2024, 9 (02) : 239 - 253
  • [5] Volatility swaps valuation under stochastic volatility with jumps and stochastic intensity
    Yang, Ben-Zhang
    Yue, Jia
    Wang, Ming-Hui
    Huang, Nan-Jing
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2019, 355 : 73 - 84
  • [6] On the valuation of variance swaps with stochastic volatility
    Zhu, Song-Ping
    Lian, Guang-Hua
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (04) : 1654 - 1669
  • [7] OPTION VALUATION WITH SYSTEMATIC STOCHASTIC VOLATILITY
    AMIN, KI
    NG, VK
    [J]. JOURNAL OF FINANCE, 1993, 48 (03): : 1059 - 1059
  • [8] Valuation of GMWB under stochastic volatility
    Choi, Jungmin
    [J]. JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2018, 21 (03) : 539 - 551
  • [9] Analytical valuation of Asian options with counterparty risk under stochastic volatility models
    Wang, Xingchun
    [J]. JOURNAL OF FUTURES MARKETS, 2020, 40 (03) : 410 - 429
  • [10] THE VALUATION OF TIMER POWER OPTIONS WITH STOCHASTIC VOLATILITY
    Ha, Mijin
    Kim, Donghyun
    Ahn, Seryoong
    Yoon, Ji-hun
    [J]. JOURNAL OF THE KOREAN SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 2022, 26 (04) : 296 - 309