Valuation Equations for Stochastic Volatility Models

被引:12
|
作者
Bayraktar, Erhan [1 ]
Kardaras, Constantinos [2 ]
Xing, Hao [3 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48104 USA
[2] Boston Univ, Dept Math & Stat, Boston, MA 02215 USA
[3] Univ London London Sch Econ & Polit Sci, Dept Stat, London WC2A 2AE, England
来源
基金
美国国家科学基金会;
关键词
stochastic volatility models; valuation equations; Feynman-Kac theorem; strict local martingales; necessary and sufficient conditions for uniqueness; ASSET PRICE BUBBLES; BOUNDARY; MARTINGALES; REGULARITY; UNIQUENESS; OPTIONS;
D O I
10.1137/110842302
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We analyze the valuation partial differential equation for European contingent claims in a general framework of stochastic volatility models where the diffusion coefficients may grow faster than linearly and degenerate on the boundaries of the state space. We allow for various types of model behavior: the volatility process in our model can potentially reach zero and either stay there or instantaneously reflect, and the asset-price process may be a strict local martingale. Our main result is a necessary and sufficient condition on the uniqueness of classical solutions to the valuation equation: the value function is the unique nonnegative classical solution to the valuation equation among functions with at most linear growth if and only if the asset price is a martingale.
引用
收藏
页码:351 / 373
页数:23
相关论文
共 50 条