BAYESIAN MODEL SELECTION AND FORECASTING IN NONCAUSAL AUTOREGRESSIVE MODELS

被引:15
|
作者
Lanne, Markku [1 ,2 ]
Luoma, Arto [3 ]
Luoto, Jani [1 ,2 ]
机构
[1] Univ Helsinki, Dept Polit & Econ Studies, FIN-00014 Helsinki, Finland
[2] Univ Helsinki, HECER, FIN-00014 Helsinki, Finland
[3] Univ Tampere, Dept Math & Stat, FIN-33101 Tampere, Finland
关键词
LIKELIHOOD-ESTIMATION; INFLATION;
D O I
10.1002/jae.1217
中图分类号
F [经济];
学科分类号
02 ;
摘要
In this paper, we propose a Bayesian estimation and forecasting procedure for noncausal autoregressive (AR) models. Specifically, we derive the joint posterior density of the past and future errors and the parameters, yielding predictive densities as a by-product. We show that the posterior model probabilities provide a convenient model selection criterion in discriminating between alternative causal and noncausal specifications. As an empirical application, we consider US inflation. The posterior probability of noncausality is found to be highover 98%. Furthermore, the purely noncausal specifications yield more accurate inflation forecasts than alternative causal and noncausal AR models. Copyright (c) 2010 John Wiley & Sons, Ltd.
引用
收藏
页码:812 / 830
页数:19
相关论文
共 50 条
  • [31] Bayesian methods for autoregressive models
    Penny, W.D.
    Roberts, S.J.
    [J]. Neural Networks for Signal Processing - Proceedings of the IEEE Workshop, 2000, 1 : 125 - 134
  • [32] Bayesian Mixtures of Autoregressive Models
    Wood, Sally
    Rosen, Ori
    Kohn, Robert
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2011, 20 (01) : 174 - 195
  • [33] Bayesian model selection in ARFIMA models
    Egrioglu, Erol
    Guenay, Sueleyman
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2010, 37 (12) : 8359 - 8364
  • [34] Prediction-focused model selection for autoregressive models
    Claeskens, Gerda
    Croux, Christophe
    Van Kerckhoven, Johan
    [J]. AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2007, 49 (04) : 359 - 379
  • [35] TWO-DIMENSIONAL SPECTRUM ESTIMATION USING NONCAUSAL AUTOREGRESSIVE MODELS
    SHARMA, G
    CHELLAPPA, R
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1986, 32 (02) : 268 - 275
  • [36] A new Bayesian approach to quantile autoregressive time series model estimation and forecasting
    Cai, Yuzhi
    Stander, Julian
    Davies, Neville
    [J]. JOURNAL OF TIME SERIES ANALYSIS, 2012, 33 (04) : 684 - 698
  • [37] Bayesian forecasting of sires breeding values using autoregressive panel data model
    Silva, F. F.
    Safadi, T.
    Muniz, J. A.
    Aquino, L. H.
    Mourao, G. B.
    [J]. ARQUIVO BRASILEIRO DE MEDICINA VETERINARIA E ZOOTECNIA, 2008, 60 (05) : 1166 - 1173
  • [38] Forecasting industrial employment figures in Southern California: A Bayesian vector autoregressive model
    Puri, A
    Soydemir, G
    [J]. ANNALS OF REGIONAL SCIENCE, 2000, 34 (04): : 503 - 514
  • [39] Forecasting industrial employment figures in Southern California: A Bayesian vector autoregressive model
    Anil Puri
    Gökçe Soydemir
    [J]. The Annals of Regional Science, 2000, 34 : 503 - 514
  • [40] Model Structure Selection for Speed Forecasting with Nonlinear Autoregressive with an Exogenous Input
    Saad, Z.
    Mashor, M. Y.
    [J]. FOURTH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS, MODELLING AND SIMULATION (ISMS 2013), 2013, : 290 - 293