BAYESIAN MODEL SELECTION AND FORECASTING IN NONCAUSAL AUTOREGRESSIVE MODELS

被引:15
|
作者
Lanne, Markku [1 ,2 ]
Luoma, Arto [3 ]
Luoto, Jani [1 ,2 ]
机构
[1] Univ Helsinki, Dept Polit & Econ Studies, FIN-00014 Helsinki, Finland
[2] Univ Helsinki, HECER, FIN-00014 Helsinki, Finland
[3] Univ Tampere, Dept Math & Stat, FIN-33101 Tampere, Finland
关键词
LIKELIHOOD-ESTIMATION; INFLATION;
D O I
10.1002/jae.1217
中图分类号
F [经济];
学科分类号
02 ;
摘要
In this paper, we propose a Bayesian estimation and forecasting procedure for noncausal autoregressive (AR) models. Specifically, we derive the joint posterior density of the past and future errors and the parameters, yielding predictive densities as a by-product. We show that the posterior model probabilities provide a convenient model selection criterion in discriminating between alternative causal and noncausal specifications. As an empirical application, we consider US inflation. The posterior probability of noncausality is found to be highover 98%. Furthermore, the purely noncausal specifications yield more accurate inflation forecasts than alternative causal and noncausal AR models. Copyright (c) 2010 John Wiley & Sons, Ltd.
引用
收藏
页码:812 / 830
页数:19
相关论文
共 50 条
  • [1] Forecasting bubbles with mixed causal-noncausal autoregressive models
    Hecq, Alain
    Voisin, Elisa
    [J]. ECONOMETRICS AND STATISTICS, 2021, 20 : 29 - 45
  • [2] Bayesian selection of threshold autoregressive models
    Campbell, EP
    [J]. JOURNAL OF TIME SERIES ANALYSIS, 2004, 25 (04) : 467 - 482
  • [3] Optimal forecasting of noncausal autoregressive time series
    Lanne, Markku
    Luoto, Jani
    Saikkonen, Pentti
    [J]. INTERNATIONAL JOURNAL OF FORECASTING, 2012, 28 (03) : 623 - 631
  • [4] Forecasting with Global Vector Autoregressive Models: a Bayesian Approach
    Cuaresma, Jesus Crespo
    Feldkircher, Martin
    Huber, Florian
    [J]. JOURNAL OF APPLIED ECONOMETRICS, 2016, 31 (07) : 1371 - 1391
  • [5] Bayesian Subset Selection of Seasonal Autoregressive Models
    Amin, Ayman A.
    Emam, Walid
    Tashkandy, Yusra
    Chesneau, Christophe
    [J]. MATHEMATICS, 2023, 11 (13)
  • [6] Bayesian variable selection for matrix autoregressive models
    Celani, Alessandro
    Pagnottoni, Paolo
    Jones, Galin
    [J]. STATISTICS AND COMPUTING, 2024, 34 (02)
  • [7] Bayesian variable selection for matrix autoregressive models
    Alessandro Celani
    Paolo Pagnottoni
    Galin Jones
    [J]. Statistics and Computing, 2024, 34
  • [8] Bayesian Variable Selection in Spatial Autoregressive Models
    Piribauer, Philipp
    Cuaresma, Jesus Crespo
    [J]. SPATIAL ECONOMIC ANALYSIS, 2016, 11 (04) : 457 - 479
  • [9] Efficient Bayesian model class selection of vector autoregressive models for system identification
    Yang, Jia-Hua
    Kong, Qing-Zhao
    Liu, Hong-Jun
    Peng, Hua-Yi
    [J]. STRUCTURAL CONTROL & HEALTH MONITORING, 2021, 28 (09):
  • [10] CONSISTENT ORDER SELECTION FOR NONCAUSAL AUTOREGRESSIVE MODELS VIA HIGHER-ORDER STATISTICS
    TUGNAIT, JK
    [J]. AUTOMATICA, 1990, 26 (02) : 311 - 320