Phase Transition and Level-Set Percolation for the Gaussian Free Field

被引:66
|
作者
Rodriguez, Pierre-Francois [1 ]
Sznitman, Alain-Sol [1 ]
机构
[1] ETH, Dept Math, CH-8092 Zurich, Switzerland
关键词
STRONGLY CORRELATED SYSTEMS; RANDOM INTERLACEMENTS; VACANT SET;
D O I
10.1007/s00220-012-1649-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider level-set percolation for the Gaussian free field on , d a parts per thousand yen 3, and prove that, as h varies, there is a non-trivial percolation phase transition of the excursion set above level h for all dimensions d a parts per thousand yen 3. So far, it was known that the corresponding critical level h (*)(d) satisfies h (*)(d) a parts per thousand yen 0 for all d a parts per thousand yen 3 and that h (*)(3) is finite, see Bricmont et al. (J Stat Phys 48(5/6):1249-1268, 1987). We prove here that h (*)(d) is finite for all d a parts per thousand yen 3. In fact, we introduce a second critical parameter h (**) a parts per thousand yen h (*), show that h (**)(d) is finite for all d a parts per thousand yen 3, and that the connectivity function of the excursion set above level h has stretched exponential decay for all h > h (**). Finally, we prove that h (*) is strictly positive in high dimension. It remains open whether h (*) and h (**) actually coincide and whether h (*) > 0 for all d >= 3.
引用
收藏
页码:571 / 601
页数:31
相关论文
共 50 条
  • [21] The concept of material forces in phase transition problems within the level-set framework
    Antonios I. Arvanitakis
    Vassilios K. Kalpakides
    Archive of Applied Mechanics, 2011, 81 : 1781 - 1792
  • [22] The concept of material forces in phase transition problems within the level-set framework
    Arvanitakis, Antonios I.
    Kalpakides, Vassilios K.
    ARCHIVE OF APPLIED MECHANICS, 2011, 81 (12) : 1781 - 1792
  • [23] High-dimensional asymptotics for percolation of Gaussian free field level sets
    Drewitz, Alexander
    Rodriguez, Pierre-Francois
    ELECTRONIC JOURNAL OF PROBABILITY, 2015, 20 : 1 - 39
  • [24] On a relation between the volume of fluid, level-set and phase field interface models
    Waclawczyk, Tomasz
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2017, 97 : 60 - 77
  • [25] VARIATIONAL LEVEL-SET WITH GAUSSIAN SHAPE MODEL FOR CELL SEGMENTATION
    Gelas, A.
    Mosaliganti, K.
    Gouaillard, A.
    Souhait, L.
    Noche, R.
    Obholzer, N.
    Megason, S. G.
    2009 16TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-6, 2009, : 1089 - 1092
  • [26] Analyticity of Gaussian Free Field Percolation Observables
    Panagiotis, Christoforos
    Severo, Franco
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2022, 396 (01) : 187 - 223
  • [27] Analyticity of Gaussian Free Field Percolation Observables
    Christoforos Panagiotis
    Franco Severo
    Communications in Mathematical Physics, 2022, 396 : 187 - 223
  • [28] Level-set computations of free surface rotational flows
    Colicchio, G
    Landrini, M
    Chaplin, JR
    JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2005, 127 (06): : 1111 - 1121
  • [29] Percolation for the Gaussian free field on the cable system: counterexamples
    Prevost, Alexis
    ELECTRONIC JOURNAL OF PROBABILITY, 2023, 28
  • [30] A HYBRID LEVEL-SET METHOD FOR FREE-SURFACE FLOWS
    Kees, C. E.
    Farthing, M. W.
    Akkerman, I.
    Bazilevs, Y.
    PROCEEDINGS OF THE XVIII INTERNATIONAL CONFERENCE ON COMPUTATIONAL METHODS IN WATER RESOURCES (CMWR 2010), 2010, : 1181 - 1188